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Abstract
This article investigates the performance of
independent reinforcement learners in multi-
agent games. Convergence to Nash equilibria
and parameter settings for desired learning be-
havior are discussed for Q-learning, Frequency
Maximum Q value (FMQ) learning and lenient
Q-learning.
FMQ and lenient Q-learning are shown to
outperform regular Q-learning significantly in
the context of coordination games with mis-
coordination penalties. Furthermore, Q-
learning with an ε-greedy and FMQ learning
with a Boltzmann action selection are shown to
scale well to games with one thousand agents.
Keywords: iterated games, reinforcement
learning, Q-learning, FMQ-learning, lenient Q-
learning

1 Introduction
In this paper value based reinforcement learning algo-
rithms, namely Q-learning and two adaptations, are
compared in multi-agent games. Learning in multi-agent
environments is significantly more complex than single-
agent learning as the dynamics to learn change by the
learning process of other agents. This makes predicting
learning behavior of learning algorithms in multi-agent
environments difficult. They are not only situated in a
non-stationary environment but also need to deal with
incomplete information and communication limits. In
non-stationary environments the Markov property does
not hold which makes all proofs of convergence to opti-
mal policies from single-agent learning that are based on
that assumption inapplicable. This reduces the theoret-
ical framework available for multi-agent learning. More
recently, Evolutionary Game Theory (EGT) with less
strong assumptions than classical Game Theory (GT)
could be linked to Reinforcement Learning (RL) and pro-
vides useful insights into the learning dynamics [14, 4].

The approaches to multi-agent learning vary from
joint action space to independent learners. Joint action

space learners belong to the class of model based learn-
ing while independent learners are model free. Model
based learning tries to make use of knowledge about the
underlying structure of the problem, but precisely this
information is often supposed to be unavailable in games.
Due to incomplete information it is attractive to choose
for independent learners in multi-agent environments.

Independent multi-agent RL belongs to the class of
model free learning - the information is entirely extracted
from a numerical reward feedback from the environment.
This feedback depends on the action sequence that the
agent executes in the environment. As such it can be
used to relate rewards to actions and learn a policy that
maximizes the reward signal. It has been shown that
these learners can be used for action coordination in co-
operative and competitive settings [11].

The presented findings survey algorithm perfor-
mances in different multi-agent games and indicate
parameter settings for which desired learning behav-
ior can be achieved. Besides two-agent two-action
games, penalty games and coordination games are stud-
ied and significant differences in learning performances
are pointed out. Concepts like Nash equilibria, Pareto
optimality and social welfare are considered, particular
attention is devoted to variations of initial conditions,
convergence speed and convergence to global or local
optima. The learning behaviors of the value iterators
Q-learning, FMQ and lenient Q-learning are studied by
simulation and analysis supported by visualizations of
the learning dynamics. A comparison with policy it-
erators and learning automata in particular can be per-
formed consulting [6] in which the same analytical means
are deployed.

This article is structured as follows: Section 2 pro-
vides definitions of games and analytical concepts from
GT. Reinforcement learning and the learning algorithms
in particular are introduced in Section 3. The tools
which are used to investigate learning behaviors in the
experiments are shown in Section 4 and obtained results
are laid out in Section 5. Section 6 discusses the find-
ings and puts them into context. Finally, Section 7 draws
conclusions based on the discussion.
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2 Concepts from Game Theory
This section presents the required concepts from GT. It
starts with an intuitive and a formal definition of games,
gives the means to characterize them and argues for the
selected examples that are employed in the experiments.
The definitions are based on [3, 4].

Game theory introduced games as formal models to
study interactive situations. It emerged from the inves-
tigation of strategic conflicts, e.g. in economics and war,
and was founded by John von Neumann and Oskar Mor-
genstern who published the first important book [15] in
this discipline together in 19441. Since then, the the-
ory has been enriched by many contributors. Among
them John Nash, who introduced what is now known
as the Nash Equilibrium (NE) in 1951 and John May-
nard Smith, who contributed the notion of Evolutionary
Stable Strategies (ESS) in 1973.

2.1 Games
Games model the strategic interaction of players, in
the context of reinforcement learning also called agents.
Each player has a set of available actions, called pure
strategies, and is affected by all other players’ actions.
More specifically, the player has a preference about the
action profile which is the set of actions played by all
agents. The formal definition of a game specifies the
players, the actions available to them, preferences for
outcomes and the information that is available about
other players’ actions and preferences.

Games can be played once or repeatedly. Iterated
play allows the strategy to be dependent on previous
outcomes of the game. In other words it allows to learn
a strategy from experience.

Traditionally game theory assumes rationality. This
means each player is assumed to be absolutely self inter-
ested, capable and willing to consider all possible out-
comes of the game and selecting the action that max-
imizes the expected payoff for that player. One of the
main criticisms against game theory is the surrealism
of that assumption because rationality does not always
apply, especially not to humans. However, the learn-
ers under investigation are rational hence game theory
provides a good framework for the analysis.

There are two representations for games, the exten-
sive and the strategic form. The extensive form describes
how the game is played over time in a game tree. The
outcome is captured in a single value for each player, the
utility, reward or payoff, that denotes the preference of
that player for that outcome.

Not every game requires this description. Normal
form games or strategic games are games of simultaneous

1Previous contributions can be counted to this discipline but
this book triggered the first hype around game theory such that it
was actually applied in practice [1].

D C
D 3, 3 0, 5
C 5, 0 1, 1

Figure 1: The payoff matrix for the Prisoners’ dilemma.
Player one chooses a row, player two chooses a column,
each player can Deny or Confess. The first number of
the selected action combination represents the payoff to
player one and the second number the payoff to player
two.

action selection. The utility function for each player can
be summarized in a matrix that lists his choices against
all combinations of opponents’ choices. A common nota-
tion for two-player normal form games is a bi-matrix that
displays the rewards for all combinations of actions. The
first player chooses a row and the second player chooses
a column. The numbers refer to the payoff for the first
and second player respectively. If both players receive
identical payoffs a simple matrix suffices.

The reward assigned to a player depends only on the
current combination of actions. Multi-state games may
introduce dependence on previous actions but are not
within the scope of this paper. Furthermore, all games
are deterministic, that is a unique payoff is assigned to
each pure strategy profile.

The example in Figure 1 shows the payoffs in the
Prisoners’ Dilemma (PD), the classical text book ex-
ample of a normal form game. It models the follow-
ing strategic conflict: Assume two burglars are captured
close to a crime scene and interviewed separately by the
police. They can both choose to either confess or deny.
If both confess, they will be sentenced for some years, if
both deny they will be sentenced for one year for illegal
possession of a weapon. However, if one confesses while
the other one denies he is set free while the other one is
sentenced for many years. The preference over the out-
comes is displayed in the payoff value which is higher for
more preferable outcomes.

Mathematically, an n-player normal form game is de-
fined as the tuple < N, (A1, . . . , An), (u1, . . . , un) >:

• N = {1, . . . , n} is a finite set of n players

• Ai = {ai1, . . . , aimi} is a finite set of mi actions
available to player i. The number of actions may
differ between players. Let si take on the value of
a particular action aij for player i. A pure strategy
profile is an n-tuple s = (s1, . . . , sn) that associates
one action with each player. Furthermore, let s−i =
(s1, . . . , si−1, si+1, . . . , sn) denote this same profile
without the action of player i, so that (si, s−i) forms
a complete profile of strategies.

• ui : A1 × . . . × An → < is the utility function for

(v. March 15, 2008, p.2)
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player i. It maps a pure strategy profile to a value.
For convenience the short hand notation ui(si|s−i)
will be used besides ui(s) to refer to the utility of a
complete profile of strategies.

Each player executes a pure strategy each iteration. It
is drawn from the policy of player i, which is the mixed
strategy πi that assigns a probability to each action:

πi ∈
{
πi : Ai → [0, 1] |

∑
aij∈Ai

πi(aij) = 1
}

A mixed strategy πi for player i specifies a probability
distribution that is used to select the action si = aij
with probability πi(aij) when the player plays the game.
Let π = (π1, . . . , πn) denote the mixed strategy profile
and π−i = (π1, . . . , πi−1, πi+1, . . . , πn) the same profile
without the strategy for player i. The expected payoff
for playing πi against the set of mixed strategies π−i
played by the opponents is the sum over the utilities
of all possible action combinations multiplied by their
probability:

vi(πi|π−i) =
∑
si,s−i

ui(si|s−i) · πi(si) · π−i(s−i)

The term πi(si) denotes the probability for player i
to play the pure strategy si. The subsequent term
π−i(s−i) =

∏
sk∈s−i

πk(sk) equals the probability that
the other players play the strategy profile s−i. It is easi-
est to grasp for a finite number of players. For two play-
ers the probability for each action combination is simply
the product of two probabilities:

v1(π1|π2) =
∑
s1,s2

ui(s1|s2) · π1(s1) · π2(s2)

2.2 Analyzing Games

A game has n players and mi actions for player i. Two-
agent games are often labeled with the number of actions
for each player, e.g. a 2x2 game refers to a two-player
game with two actions for both players. Some notions
from GT aid in a more specific characterization.

Dominated Strategies
A pure strategy si is strictly dominated by s′i if s′i yields
higher utilities for all opponents profiles:

∀s−i (ui(si|s−i) < ui(s′i|s−i))

In the Prisoners’ dilemma given in Figure 3
the pure strategy deny is strictly dominated
by confess. A strategy is weakly dominated if
∀s−i (ui(si|s−i) ≤ ui(s′i|s−i)).

Best Response
The best response is the set of strategies that have the
maximal possible reward given all other players’ strate-
gies. Due to rationality all players are assumed to pick
the best action available to them. A mixed strategy π
is a best response of player i if there is no other mixed
strategy π′ that would lead to a higher reward for this
player given that all other players’ strategies π−i remain
the same.

BR(π−i) = πi ↔ ∀π′i( vi(πi|π−i) ≥ vi(π′i|π−i) )

Nash Equilibria
A Nash Equilibrium (NE) is a strategy profile for which
no player can improve his payoff by changing his policy
as long as the other players keep their policies fixed. It
is a tuple of strategies (π∗1 , . . . , π

∗
n) such that no player

has an incentive for unilateral deviation, that is every
strategy π∗i is a best response to π∗−i.

π∗i = arg max
πi

vi(πi|π∗−i)

Figure 3 indicates all pure Nash equilibria by an asterisk.

Pareto Dominance
A strategy profile π Pareto dominates π′ if and only if all
players obtain at least the same reward and at least one
player receives a strictly higher reward when π is played.

π Pareto dominates π′

↔ ( ∀i(vi(π) ≥ vi(π′)) ∧ ∃j(vj(π) > vj(π′)) )

Pareto Optimality
A set of strategies is Pareto optimal if it is not Pareto
dominated. It is important to notice that not every NE is
Pareto optimal. The only NE (C,C) with utilities (1, 1)
in the PD for example is Pareto dominated by (D,D)
with utilities (3, 3).

Social Welfare
In a cooperative game it is desired to find a strategy
profile that maximizes the overall outcome. The social
welfare ω of a mixed strategy profile π is the sum of
individual utilities:

ω(π) =
∑
i

vi(πi|π−i)

The actual social welfare of a pure strategy profile which
is of interest in the context of reinforcement learning is
defined as:

ω(s) =
∑
i

ui(si|s−i)

In cooperative games it is desired to find a strategy pro-
file that maximizes the social welfare, the maximum so-
cial welfare profile π∗ is therefore defined as:

π∗ = arg max
π

ω(π)

(v. March 15, 2008, p.3)
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2.3 Selected Games

This section defines the games that serve as a bench-
mark for the learning algorithms under investigation.
The most simple multi-agent games yield two players
and two actions. Of those, three representative examples
are selected. Two games with three actions are used to
examine coordination problems between two agents with
many actions. Finally, two games with many agents and
many actions are laid out that reveal the ability of the
learning algorithms to solve large scale problems.

Two-agent two-action games
Figure 2 defines the general payoffs for both agents in a
game with two actions.

L R
T a11, b11 a12, b12
B a21, b21 a22, b22

Figure 2: General two-agent two-action game

Games of this type can be divided into three classes [14]:

Class 1 If (a11 − a21)(a12 − a22) > 0
or (b11 − b21)(b12 − b22) > 0 there exists at least
one dominant strategy and therefore only one pure
equilibrium. The only exception: Let player i have
a dominant strategy si and the other player j ob-
tain u(sj |si) = x ∀sj , then there are infinitely many
equilibria where player j mixes arbitrarily between
his actions.

Class 2 If (a11 − a21)(a12 − a22) < 0 ,
(b11 − b21)(b12 − b22) < 0 and
(a11 − a21)(b11 − b12) > 0 there are two pure

and one mixed equilibrium.

Class 3 If (a11 − a21)(a12 − a22) < 0 ,
(b11 − b21)(b12 − b22) < 0 and
(a11 − a21)(b11 − b12) < 0 there is just one

mixed equilibrium.

In each class of games the learning algorithms show dif-
ferent learning dynamics. This paper studies the exam-
ples given in Figure 3 where the classes are represented
by the PD (class 1), the Battle of Sexes (BoS) (class 2)
and the Matching Pennies (MP) (class 3).

The NE (C,C) of the PD is not Pareto optimal be-
cause it is Pareto dominated by the strategy pair (D,D).
BoS is also known as Bach or Stravinsky. A couple wants
to go out together but they need to decide for Bach or
Stravinsky without communication. They have different
preferences and only enjoy their evening if they meet
their partner. It yields two pure equilibria at (B,B)
with payoffs (2, 1) and (S, S) with payoffs (1, 2) and one

D C
D 3, 3 0, 5
C 5, 0 1, 1∗

B S
B 2, 1∗ 0, 0
S 0, 0 1, 2∗

H T
H 1,−1 −1, 1
T −1, 1 1,−1

Figure 3: Reward matrices for Prisoners’ Dilemma
(top-left, Deny or Confess), Battle of Sexes (top-right,
Bach or Stravinski) and Matching Pennies (bottom,
Head or Tail); ∗=pure Nash equilibria

mixed equilibrium where player 1 mixes between the ac-
tions ( 2

3 ,
1
3 ) and player two mixes ( 1

3 ,
2
3 ) which leads to

expected payoffs ( 2
3 ,

2
3 ). All equilibria are Pareto opti-

mal but only the pure equilibria correspond to maximum
social welfare profiles.

The MP game is played by two players revealing two
coins simultaneously. Both can choose Head or Tail,
player one wins if they reveal the same side of the coin,
otherwise player two wins. Matching Pennies is also
called the Parity Game because it is completely sym-
metric. In the mixed NE both players mix both ac-
tions equally and obtain expected rewards (0, 0) which
is Pareto optimal.

Penalty Games
Penalty games are a special type of coordination games.
They feature payoffs that reward certain joint actions
and punish mis-coordination. The Climbing Game (CG)
and Penalty Game (PG) as defined in [2] are used in this
paper.

This class of games can be divided into games with
one and games with more than one optimal joint action.
The CG has the single optimal joint action (T, L) while
the PG yields two optimal joint actions at (T, L) and
(B,R). As both classes are represented the scope can be
restricted to these two games without loss of generality.

Climbing Game
The CG given in Figure 4 is a cooperative game with
identical payoffs for both players. It has one optimal
joint action (T, L) and Nash equilibria at (T, L) and
(M,C). Furthermore, heavy penalties surround the
Pareto optimal Nash equilibrium while the last action
for each player is never penalized. This makes it a tough
benchmark for independent learners that should over-
come the penalties to find and reach the optimum. Com-
mon values for the penalty are c = 30 and c = 10.

Penalty Game
The PG exhibits the difficulty to agree on one optimal
joint action, either (T, L) or (B,R) while encountering

(v. March 15, 2008, p.4)
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L C R
T 11∗ −c 0
M −c 7∗ 6
B 0 0 5

Figure 4: Payoff matrix for the climbing game, experi-
ments use c = 10; ∗=pure Nash equilibria

heavy penalties for each mis-coordination. It is a co-
operative game with identical payoffs given in Figure
5. The game yields three Nash equilibria, which are at
(T, L), (M,C) and (B,R). The penalties and the Nash
equilibrium in the center make it a challenging game for
learners because the second action of each player guaran-
tees a non-negative reward while the optima can only be
achieved by cooperation. Common values for the penalty
are p = 0 and p = 10.

L C R
T 10∗ 0 −p
M 0 2∗ 0
B −p 0 10∗

Figure 5: Payoff matrix for the penalty game, experi-
ments use p = 10; *=pure Nash equilibria

Coordination Games
Games serve as a model for coordination tasks at least
since 1960, when Schelling made the use of games in this
context explicit by introducing the two-player guessing
game [10].

Let the coordination game and the anti-coordination
game be subsumed under the term coordination games.
In the coordination game agents obtain a positive re-
ward when they execute the same action, and in the
anti-coordination game vice versa. The guessing game is
an example of a coordination game.

In the two-agent two-action case given in Figure 6 the
two classes of games are equivalent and can be converted
from one to the other by renaming the actions. Once
more than two agents or two actions are considered both
games differentiate. In order to study the scalability
of learners, the generalizations of these games to many
agents and many actions should be investigated.

A B
A 1 0
B 0 1

A B
A 0 1
B 1 0

Figure 6: Two-agent two-action coordination game
(left) and anti-coordination game (right).

Guessing Game
Imagine a situation where players take individual de-
cisions but the individual payoff is proportional to the
number of players that take the same action. The intro-
duction of new standards in industry is such a process.
Each company has to decide which standard to support
and their utility depends on the number of other players
that make the same choice. It is a generalization of the
coordination game to arbitrary numbers of agents and
actions and will be called Guessing Game (GG) in this
article.

The reward for each agent could be given in a matrix
but is easier to grasp as a formula. Let g(si|s−i) be the
number of agents choosing action si, that is the number
of j’s for which sj ∈ s and sj = si. Recall si is the action
player i chooses and n the total number of players. The
utility function ui(si|s−i) for player i is defined as:

ui(si|s−i) =
g(si|s−i)

n
(1)

The experiments are based on the complete guessing
game which features as many actions as players, thus
mi = n. This version has n pure NE at s = (s1, . . . , sn)
where x ∈ {1, . . . , n} and si = aix for all i. Each
of the NE is Pareto optimal with a utility value of
ui(si|s−i) = g(si|s−i)

n = n
n = 1 for each agent.

Dispersion Game
A large number of natural problems, including load bal-
ancing in computer science, niche selection in economics
and division of roles within a team in robotics, require
agents to disperse as well as possible over a number of
actions [5]. Any of these problems can be modeled by
a Dispersion Game (DG) - a generalization of the anti-
coordination game to arbitrary numbers of agents and
actions.

Again, let g(si|s−i) be defined as the number of
agents choosing action si and recall si is the action player
i chooses. The utility ui(si|s−i) for player i is one if no
other player plays the same action and zero otherwise:

ui(si|s−i) =
{

1 if g(si|s−i) = 1
0 otherwise

(2)

Experiments are restricted to the complete dispersion
game in which n actions are available to all players. This
game has n! optimal joint actions with a utility value of 1
for each player where each player plays a different action.
The set of optimal joint actions equals the set of Nash
equilibria which are all Pareto optimal.

(v. March 15, 2008, p.5)
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3 Reinforcement Learning
Reinforcement Learning (RL) has originally been studied
in the context of single-agent environments. An agent re-
ceives a numerical reward signal, which it seeks to maxi-
mize. The environment provides this signal as a feedback
on the sequence of actions that has been executed by the
agent. Figure 7 depicts the environment-agent interac-
tion schematically. Learners relate the reward signal to
previously executed actions to learn a policy that maxi-
mizes the expected future reward [12].

Environment

Agent
actionreward

Figure 7: Agent-environment interaction, a feedback is
given as a response to each action and may depend on
the complete sequence of executed actions.

3.1 Q-learning

Q-learning was initially discussed for single-agent en-
vironments with states. Each learning step refines a
utility-estimation function for state-action pairs and gen-
erates a new policy from the estimated values to draw the
next action to execute. Q-learning with an ε-greedy ac-
tion selection with ε = 0 over Q-values has been proved
to converge to the optimal policy under additional as-
sumptions like an appropriate environment [16]. How-
ever, different action selection methods may outperform
ε-greedy action selection in practice.

Figure 8 shows an example environment in which the
agent needs to reach some goal state, in the example the
mouse needs to find the cheese.

The idea originates from the Bellman optimality
equation which is given in Equation 3. Let R(p) be the
reward for being in state p, R(p) = 0 for all states p

Figure 8: A grid world for which the state action pair
values can be learned by the Q-learning algorithm. The
mouse needs to select an action to get to the cheese.

except the goal state p∗ for which R(p∗) > 0. P (p′|p, a)
denotes the probability to be in state p′ given that ac-
tion a is executed in state p and γ ∈ [0, 1] is the discount
factor for future rewards. V ∗ estimates the value of a
state by taking into account the immediate reward and
the discounted, expected future rewards.

V ∗(p) = R(p) + max
a
γ ·
∑
p′

P (p′|p, a)V ∗(p′) (3)

The optimal action a is given by

a = arg max
a′

γ ·
∑
p′

P (p′|p, a′)V ∗(p′)

Q-learning leverages the state value estimation to relate
rewards to state-action pairs.

Q-learning with states
Originally, Q-learning was discussed for a single agent
leading to Equation 4 as described in [12]. Let Qt(p, a)
be the quality estimation in iteration t of action a exe-
cuted in state p. Let V be the state value estimation
function that assigns the estimated value of the best
available action in that state:

V t(p) = max
a′

Qt(p, a′)

For the following formula from single agent learning, a
is the action for which the reward r is obtained. Let p
be the state in which action a is performed and let p′ be
the current state that is reached by playing a.

Qt(p, a)← (1−α)·Qt−1(p, a)+α·( r+γ ·V t−1(p′) ) (4)

The revised estimation is the weighted average between
the current estimation and the sum of observed reward
and expected discounted future rewards. An agent with
this update rule can learn the Q-values for all actions in
the grid world from Figure 8 and generate the optimal
policy from them.

Multi-agent Q-learning without states
The games under consideration do not feature states
hence the Q-function plainly estimates utilities of the
available actions. Furthermore, each agent has an inde-
pendent Q-value estimation function. Equation 5 shows
the Q-update rule for stateless Q-learning using the fol-
lowing terms:

• Qti(si) Q-value estimation function of player i at
iteration t for action si

• sti Action of player i played in iteration t

• rti Reward for player i obtained in iteration t

• α ∈ [0, 1] Learning rate

(v. March 15, 2008, p.6)
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The new estimation is the weighted sum of the old esti-
mation and the observed reward.

Qti(si)← (1− α) ·Qt−1
i (si) + α · rti (5)

As a result of (5) the Q-values of any iteration are
bounded by the initial Q-values and the rewards an agent
may encounter. This gains particular importance for
the policy generation and restricts the domain of poli-
cies that can be learned. Therefore, initial Q-values
should be chosen within the range of rewards because
they would alter the learnable domain otherwise.

Both enhancements of Q-learning that are presented
below are based on Equation 5. Besides the Q-update,
the action selection method is crucial to the learner. Sev-
eral approaches with different exploration-exploitation
properties are explained in the next section.

3.2 Action Selection
In each iteration an action needs to be chosen based on
the current knowledge. This step is essential to balance
exploitation versus exploration. Three methods will be
considered for this purpose: ε-greedy, normalization and
the Boltzmann distribution.

Every action selection defines how to generate a pol-
icy from the value estimation. The policy is a distri-
bution that is used to draw the action for the next it-
eration. Let the probabilities pj ∈ [0, 1] for each ac-
tion j be defined in the probability distribution vector
p = (p1, . . . , pm) = πi that defines policy πi for player
i. The elements of a valid distribution vector sum up to
one: ∑

j

pj = 1

An ε-greedy action selection assigns the best action with
probability (1 − ε) and some random action with prob-
ability ε. Let ε ∈ [0, 1] be the exploration factor and let
m be the number of actions.

pj =
{ 1− ε if j = arg max

si

Qti(si)
ε

m−1 otherwise

This approach allows to alter the exploration-
exploitation trade-off but has a primary emphasis on
exploitation. Exploration is random and not directed
toward promising alternatives.

The simplest method to generate a probability distri-
bution that takes into account the balance between all
q values is normalization. However, this requires non-
negative Q-values and at least one strictly positive Q-
value. Due to the fact that these values are bounded by
the learning algorithm this translates into a restriction
of non-negative rewards.

pj =
Qi(sj)∑
k

Qi(sk)

iteration t
T 10 -10 - - -
M 0 7 0 6 0
B 5 0 0 - -

iteration t + 1
T 10 -10 - - -
M - - - - -
B 5 0 0 - -

Figure 9: Lenient Q-learning reward register for L = 5,
example from CG. Q-value of M is updated with ri = 7,
maximum of five rewards (left). The next step clears the
register of the updated action (right).

However, normalization is not commonly applied in prac-
tice because it does not lead to convergence for all re-
wards as the learnable policies are very confined.

A dynamic trade-off between exploration and ex-
ploitation can be implemented using the idea of temper-
ature from physics. The Boltzmann distribution allows
a probability generation from arbitrary parameters. In
contrast to normalization it relaxes the assumptions of
positive q values. This approach is also often used for
simulated annealing where an initially high temperature
promotes exploration and decreasing temperature over
time leads to strong exploitation in the final phase.

pj =
eQi(sj)·τ−1∑
k

eQi(sk)·τ−1

The Boltzmann distribution combines the advantages of
the previous two methods. By tuning the temperature
parameter τ the balance between exploration and ex-
ploitation can be adjusted while exploration is still di-
rected toward promising actions. Very high values, e.g.
τ = 500, make the exploration random while very low
values, e.g. τ = 0.01, equal a greedy approach2. For
τ = 1 this equation is also called Gibbs distribution
which is often applied for its intermediate behavior.

3.3 Lenient Q-learning
In a cooperative learning environment it might be good
to forgive mistakes, especially in the initial learning pe-
riod. Consider the example of learning in soccer as in [8].
In the initial phase of learning both agents lack the skill
for good actions hence even a perfect forward pass may
frequently be not rewarded. This lets the agents con-
verge to actions that work well with a variety of op-
ponents strategies but that often result in suboptimal
strategy profiles. In order to tackle this problem lenient
Q-learning collects L rewards for an action before it up-
dates the estimation based on the maximum. Figure
9 depicts the update schematically. Lower rewards are
discarded and only the highest reward is used for the
update. This implies that only 1

L · iterations learning
steps are executed.

2Of course the given examples only apply in the context of the
rewards that are used which bound the Q-values.
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3.4 FMQ-Learning

The Frequency Maximum Q value (FMQ) - learner has
emerged from the optimistic assumption [7]. It keeps
track of the highest reward for each action and its fre-
quency so far. This is used to alter the policy generation
which is not based on the Q-values anymore but on the
function ev(Qi(sj)). Let F be the parameter that de-
scribes the persistence to seek the maximal encountered
reward r∗i (sj) that was observed with frequency fi(sj)
so far.

ev(Qi(sj)) = Qi(sj) + F · f(sj) · r∗i (sj)

The higher F the more the algorithm will shift the pol-
icy. This works best in combination with another FMQ
learner such that policies quickly agree on an optimum
even if it is surrounded by penalties as it is in the climb-
ing game. If F is large it enforces a quick decision for a
pure strategy.

4 Learning Behavior Analysis
This section presents the means by which learning be-
havior is studied 3.

Policy Trajectories
Trajectory plots display the learning path of I iterations
in the policy space. Any policy for n × n games can be
described by the probabilities of n − 1 actions. Mixed
strategy profile trajectories for 2x2 games can be plotted
into [0, 1] × [0, 1] by plotting (πt1(a11), πt2(a21)) for all t.
Mixed strategy profiles for 3x3 games would require a
4-dimensional space. Therefore, policies for 3x3 games
are plotted separately for each player into standard 2-
simplex plots. Each corner cj = (xj , yj) of the simplex
represents the pure strategy sj . The position of a pol-
icy in the simplex is the weighted average of the corner
points.

position(πti) =
mi∑
j=1

πti(sj) · cj

Cyclic behavior, smoothness and stability become obvi-
ous in policy trajectory plots. Using a color-map even
convergence speed can be visualized intuitively. The ini-
tial policies are displayed gray and the trajectory fades
to the final policy which is black.

Directional Field Plots
Directional field plots capture the local dynamics of the
learning behavior. They supply an overview over basins
of attraction by displaying learning behavior at a set of
grid points.

3The theoretical content of this section was enriched by mutual
collaboration with the author of [6].

The learner is started at a set of regular grid points in the
interval ]0, 1[ with a specified granularity δp for the initial
policy. After I iterations the distance between the initial
policy profile π0 and the final policy profile πI defines the
direction and length of the displayed arrow starting at
the grid point that corresponds to π0. It is averaged over
R runs to average out stochastic influences.

Convergence

The analysis of convergence behavior requires a distance
metric. When the distance from a policy profile πt to π′

is less than the threshold ε, πt is considered converged
to π′. The distance of a mixed strategy πi to another
mixed strategy π′i is defined as:

di(πi, π′i) = max
j
|πi(sj)− π′i(sj)|

The distance of a strategy profile π to another strategy
profile π′ is consequently defined as:

d(π, π′) = max
i
di(πi, π′i)

A strategy profile π is considered ε-near converged to π′

at iteration T for some ε if the distance between the two
profiles is less than ε from iteration T onwards:

π converged to π′ at T
↔ ∀t (t ≥ T → d(πt, π′) < ε)

This definition is chosen because it has an intuitive inter-
pretation. The strategy profile π is considered converged
to π′ at iteration T if no player plays any action with
a probability that deviates more than ε from π in any
later iteration of the game. The interpretation does not
change when the number of actions or agents is altered.

All games under consideration are played a finite
number of Tmax iterations. A confidence interval for
the mean convergence time T̃ can be created using N
samples that average over M runs each. As long as M
is chosen large enough the law of large numbers assures
that the samples approximately follow a t-distribution
with N degrees of freedom. The confidence interval can
be used to determine if Tmax is chosen large enough.
Furthermore, it allows to detect premature convergence
under bad parameter settings. The convergence time
refers to the time when the learning process converged
to some policy, which is not necessarily a NE.

Besides the temporal analysis, interesting points of
convergence π∗ can be studied. This provides insight into
the convergence behavior to equilibria and tendencies
toward local or global optima, e.g. in penalty games.
All given intervals refer to 95% confidence intervals for
the mean convergence behavior.
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Social Welfare Plot
Cooperative games require the agents to maximize the
overall outcome, the social welfare ω. Scaling exper-
iments primarily investigate the relation between the
number of agents and convergence speed to desired strat-
egy profiles. The social welfare plot shows the develop-
ment of the summed utilities of all agents over the it-
erations. It plots the percentage of the maximal social
welfare ω(st)

maxsω(s) over iterations t. The normalization to
the percentage makes different numbers of agents in the
DG and GG comparable.

5 Experiments
This section presents the results obtained in the experi-
ments and indicates parameter settings for which desired
learning behavior can be achieved. The analysis of learn-
ing behaviors is centered around the regular Q-learner
that is the basis for the two enhancements FMQ and le-
nient Q-learning. The enhancements will be compared
where appropriate.

An independent learner will need to converge to the
best reply in order to maximize his payoff. In self-play
a good learner is expected to converge to the Nash equi-
libria as both players converge to a best reply against
each other.

5.1 Performance in Simple Games

Each learner has different strengths and weaknesses so
they are not suited equally well for each game. Even
simple 2x2 games may require a good selection of the
algorithm to apply and fine tuning of its parameters.

The regular Q-learner performs quite well but does
only converges to mixed equilibria under certain tem-
peratures. Several extensions have been devised to over-
come this problem, e.g. extended replicator dynam-
ics [13]. Table 1 summarizes the convergence behavior of
the studied Q-learning algorithms in simple games. Con-
fidence intervals are computed from 101 samples that
average over 20 runs each. Q-values are initialized to
corresponding policies that follow a uniform distribution
over the policy space.

Prisoners’ Dilemma (PD)
The Prisoners’ dilemma yields one Nash equilibrium that
is not Pareto optimal. Figure 10 visualizes the learning
behavior of the regular Q-learner in the PD. Convergence
remains bounded as discussed in Appendix A and the
point of attraction can be moved toward the equilibrium
by decreasing the temperature τ .

Table 1 shows convergence of FMQ and lenient Q
to the Nash equilibrium. Both learners converge to the
Pareto optimal strategy (D,D) for all runs that do not

Table 1: ε-near convergence with ε = 0.1 to equilibria
in 2x2 games analyzed after I = 2000 iterations. All
learners use α = 0.01, τ = 0.1 for PD and BoS, τ =
0.5 for PM. Equilibria are given as (π1(a11), π2(a21)).
Indicated are 95% confidence intervals for convergence
percent and mean convergence time.

Q-learner

NE Convergence T̄

PD (0, 0) 99.4%± 0.4% 1080.1± 8.0

MP
(

1
2 ,

1
2

)
92.0%± 1.3% 1862.9± 3.2

BoS
(0, 0) 50.0%± 2.4%

129.2± 2.2(1, 1) 50.0%± 2.4%(
2
3 ,

1
3

)
0.0%± 0.0%

FMQ-learner F = 3

NE Convergence T̄

PD (0, 0) 74.6%± 1.9% 5.2± 0.6

MP
(

1
2 ,

1
2

)
78.7%± 1.8% 1893.3± 2.4

BoS
(0, 0) 50.6%± 2.2%

2.5± 0.2(1, 1) 49.4%± 2.2%(
2
3 ,

1
3

)
0.0%± 0.0%

Lenient Q-learner L = 3

NE Convergence T̄

PD (0, 0) 85.4%± 1.4% 186.3± 6.9

MP ( 1
2 ,

1
2 ) 81.9%± 1.6% 1547.9± 8.8

BoS
(0, 0) 48.3%± 2.1%

128.0± 4.7(1, 1) 51.7%± 2.1%(
2
3 ,

1
3

)
0.0%± 0.0%

converge to the Nash equilibrium (FMQ 25.4% and le-
nient Q-learner 14.6%). (D,D) is also the maximum
social welfare profile. Figure 11 shows example trajecto-
ries for both learners. It visualizes the information from
Table 1, FMQ converges with a mean of approximately
I = 5 iterations while lenient Q-learning requires about
I = 186 iterations.

Matching Pennies (MP)
The MP game yields one mixed NE where both play-
ers mix both actions equally. Figure 12 visualizes the
learning behavior of the three learners in the MP.

The FMQ learner with F = 3 converges to the
mixed equilibrium most quickly, followed by the regu-
lar Q-learner. However, each learning step of the lenient
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Figure 10: Directional field plots (top, I = 200) and
example trajectories (bottom, I = 600) for Q-learner
in PD under α = 0.1, τ = 2 (left) and τ = 0.5 (right).
The attractor close to the equilibrium can be analytically
predicted as derived in Appendix A.
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Figure 11: Example trajectories of I = 2000 iterations
for FMQ (left, F = 10) and lenient Q-learner (right,
L = 3) in PD under τ = 0.5 and α = 0.01. FMQ con-
verges quickly while lenient Q-learning converges slowly.
One trajectory converges to the Pareto optimal strategy
profile (D,D).

Q-learner is more directed to the equilibrium than the
Q-learner and convergence is only slowed down because
of the reduced number of learning steps. If the persis-
tence F for the FMQ learner is increased further, e.g. to
F = 10, it does not find the mixed equilibrium anymore.
In contrast to that the lenient Q-learner is very robust to
parameter changes as long as the learning rate is small
enough. Under α = 0.01 the parameters L ∈ {3, . . . , 10}
and τ ∈ [0.01, 1] lead to convergence to the mixed equi-
librium.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
1
(s

1
)

π
2
(s

1
)

Figure 12: Directional field plots (top row, I = 10)
and trajectories (bottom row, I = 600) in the MP for
the Q-learner (left), FMQ (F = 3, center) and lenient
Q-learner (L = 3, right) under α = 0.01 and τ = 1.
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Figure 13: Trajectories (I = 1000) for the Q-learner
in the MP under α = 0.01 and τ = 0.1 (left, no con-
vergence to the equilibrium) and τ = 0.5 (right, ε-near
convergence to the equilibrium for ε = 0.1). Learners
circle around the equilibrium but with an appropriate
temperature stay very close.

Figure 13 shows example trajectories of Q-learning in
the MP game. It can be observed that the mixed equi-
librium is not a stable point of convergence under τ = 0.1
while it is under τ = 0.5. Strong exploitation caused by
small temperatures lead to a policy generation similar to
ε-greedy. This forces large shifts in the policy and de-
creases the likelihood of convergence to mixed equilibria.

Battle of Sexes (BoS)

The game Battle of Sexes yields one mixed and two pure
Nash equilibria. Figure 14 shows the learning dynamics
of the three learners in this game. All learners converge
to the pure Nash equilibrium under τ = 0.1, but not if
the temperature is increased to τ = 0.5. The regular
Q-learner converges to different equilibria dependent on
the temperature τ as shown in Figure 15. However, the
mixed equilibrium is instable and after sufficient itera-
tions all trajectories converge to a pure NE.
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Figure 14: Directional field plots (I = 20, top row) and
example trajectories (bottom row) for Q-learner (left),
FMQ (F = 3, center) and lenient Q-learning (L = 3,
right) in BoS under τ = 0.5 and α = 0.01.
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Figure 15: Q-learner trajectories in BoS under
α = 0.01 and τ = 1 (left), τ = 0.5 (center) and τ = 0.1
(right); higher temperatures lead to convergence to the
mixed equilibrium but bound convergence possibility to
pure equilibria while low temperatures enforce fast con-
vergence to pure equilibria only.

5.2 Performance in Penalty Games

Penalty games are cooperative games with high penalties
around the desired maximum social welfare profile π∗.
The regular Q-learner does not overcome the penalties
systematically which initiated the development of the
two adaptations under investigation: FMQ- and lenient
Q-learning.

The results for regular Q-learning and FMQ learn-
ing from [7] as well as the results for lenient Q-learning
from [9] are confirmed. Table 2 compares the algorithms’
performances in both games and summarizes the be-
havior that tables 3 and 4 describe in detail. All re-
sults of this section refer to the games with penalties
c = p = 10. Confidence intervals are calculated from
101 samples that average over 20 runs.

Experiments in penalty games make use of an it-
eration dependent temperature and a learning rate of
α = 0.9. The experiments use a decay factor s = 0.006
and an initial temperature τ0 = 500.

τ t ← (τ0 − 1) · e−s·t + 1 (6)

Table 2: Average ε-near convergence over 2020 runs
(ε = 0.1) to the maximum social welfare policy for all
learners in the CG and PG with penalties c = p = 10.
All learners under α = 0.9 and decreasing τ , F = 10 and
L = 10 for CG and L = 5 for PG.

Learner CG PG

Q 21.8% 79.6%
FMQ 98.9% 100.0%

Lenient Q 99.9% 99.3%

Climbing Game (CG)
Table 3 lists the confidence intervals of ε-near conver-
gence in the climbing game with ε = 0.1 to pure strat-
egy profiles in percentages. Example trajectories of the
FMQ-learner are visualized in Figure 16.

The strategy profile π∗ corresponding to (T, L) is a
Pareto efficient Nash equilibrium. Furthermore, it is the
maximal social welfare profile and as such the desired
point of convergence for cooperative players. It also
yields the highest individual payoff hence it is as well
the best strategy profile for independent learners.

The climbing game can not be solved satisfactory
by the regular Q-learner. Q-learning converges to π∗

in about 21.8% while both adaptations outperform this
by far. FMQ (F = 10) achieves 98.9% and lenient Q-
learning (L = 10) 99.9% convergence to π∗.

Penalty Game (PG)
The penalty game as given in Figure 5 yields two Pareto
optimal Nash equilibria at (T, L) and (B,R) that are
maximal social welfare profiles. Table 4 list the confi-
dence intervals of ε-near convergence with ε = 0.1 to pure
strategy profiles in percentages. The regular Q-learner
converges to one of the desired policies in 79.6% while
FMQ with F = 10 achieves 100% and lenient Q-learning
with L = 5 achieves 99.3%.

1

12 2

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Player 1 Player 2

Figure 16: Two example trajectories for both FMQ-
learners with F = 3 in the CG show convergence to the
global optimum (T, L) starting close to (B,L) in (1) and
(M,C) in (2). Initial high exploration causes large policy
shifts while eventual exploitation allows convergence.
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Table 3: 95% Confidence intervals for ε-near conver-
gence with ε = 0.1 in CG to pure strategy profiles
in percent. Analyzed after I = 2000 iterations with
α = 0.9 and decreasing τ . Q-learner (top, 43.1% not
converged to any pure strategy profile), FMQ-learner
(middle, F = 10, 0.1% n.c.) and lenient Q-learner (bot-
tom, L = 10, 0.1% n.c.). Player 1 chooses T, M or B
and player two chooses L, C or R. The maximal social
welfare profile is (T, L).

Q-learner

L C R

T 21.8 ± 1.9 0 ± 0 0 ± 0
M 0 ± 0 0.2 ± 0.2 6.0 ± 1.1
B 0 ± 0 0 ± 0 28.9 ± 1.9

FMQ-learner F = 10

L C R

T 98.9 ± 0.4 0 ± 0 0 ± 0
M 0 ± 0 0.6 ± 0.3 0.1 ± 0.1
B 0 ± 0 0 ± 0 0.3 ± 0.3

Lenient Q-learner L = 10

L C R

T 99.9 ± 0.2 0 ± 0 0 ± 0
M 0 ± 0 0 ± 0 0 ± 0
B 0 ± 0 0 ± 0 0 ± 0

5.3 Scalability
Many real life problems involve large numbers of agents.
In order to give an impression how well the algorithms
can be applied to large scale problems they are tested in
the GG and the DG with varying numbers of agents.
Scaling experiments require specific parameter values
and a wrong choice easily leads to non converging be-
havior. The GG with n players has n maximal social
welfare profiles while the DG has n! maximal social wel-
fare profiles. As n! is much larger than n the DG can be
solved much faster than the GG.

Q-values are initialized with the average of the min-
imal and maximal reward to encounter, Q0

i (si) = 1
2 for

all players i and all actions si.

Guessing Game (GG)
In the GG all agents try to group as quickly as pos-
sible. Convergence to suboptimal solutions, e.g. two
groups with equally many agents, are not uncommon.
Figure 17 shows the speed of convergence for different
learners in the guessing game. An increase of the FMQ
persistence F shifts the grouping process to an earlier

Table 4: 95% Confidence intervals for ε-near conver-
gence with ε = 0.1 in PG to pure strategy profiles
in percent. Analyzed after I = 2000 iterations with
α = 0.9 and decreasing τ . Q-learner (top, 14.8% not
converged to any pure strategy profile), FMQ-learner
(middle, F = 10, 0.0% n.c.) and lenient Q-learner (bot-
tom, L = 5, 0.7% n.c.). Player 1 chooses T, M or B
and player two chooses L, C or R. (T, L) and (B,R) are
maximal social welfare profiles.

Q-learner

L C R

T 40.9 ± 2.2 0.0 ± 0.0 0.0 ± 0.0
M 0.0 ± 0.0 5.6 ± 1.0 0.0 ± 0.0
B 0.0 ± 0.0 0.0 ± 0.0 38.7 ± 2.3

FMQ-learner F = 10

L C R

T 50.0 ± 2.4 0.0 ± 0.0 0.0 ± 0.0
M 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
B 0.0 ± 0.0 0.0 ± 0.0 50.0 ± 2.4

Lenient Q-learner L = 5

L C R

T 49.9 ± 2.2 0.0 ± 0.0 0.0 ± 0.0
M 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
B 0.0 ± 0.0 0.0 ± 0.0 49.4 ± 2.2

iteration. However, there is a point of diminishing re-
turns. Furthermore, increasing F does not increase the
qualitative convergence while lenience slows down the
learning process but allows convergence to a maximal
social welfare equilibrium.

Dispersion Game (DG)

Figure 18 visualizes the impact of the policy generation
method on the speed of dispersion in the DG. Further-
more, scalability of the Q-learner with an ε-greedy ac-
tion selection is compared to the FMQ heuristic with
a Boltzmann action selection. An equilibrium can be
found within reasonable numbers of iterations using the
ε-greedy action selection. This action selection method
actually allows to scale up to thousand agents without
significant deterioration of the performance over the it-
erations, the lines for n = 100 and n = 1000 almost coin-
cide in the corresponding plot. FMQ also scales well but
has a stronger dependency of the maximal convergence
on the number of agents. However, even for n = 1000 a
performance of 90% is reached within 50 iterations.
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Figure 18: Social welfare percentage over iterations in the DG (averages of 10 runs). Q-learner under α = 0.1,
different action selection methods (left, n = 1000), different numbers of agents: Q-learner with ε-greedy action
selection (center, ε = 0) and FMQ with Boltzmann distribution (right, F = 10, τ = 0.01).
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Figure 17: Social welfare percentage over iterations
in the GG for different learners (n = 100, α = 1 and
τ = 0.01; averaged over 10 runs). All learners except the
lenient Q-learner converged to the suboptimal solution
with two equally sized groups once.

6 Discussion

The obtained results demonstrate the learning perfor-
mance of Q-learning in comparison with the adaptations
FMQ and lenient Q-learning. Parameter settings for
convergence to equilibria have been pointed out. In gen-
eral, low temperatures and accompanying high exploita-
tion lead to convergence to pure strategy profiles while
higher temperatures that impose more exploration al-
low converge to mixed equilibria. Furthermore, higher
convergence to mixed equilibria is achieved with smaller
learning rates. On the other hand, high learning rates
can be applied to overcome penalties in cooperative co-
ordination games. FMQ-learning with high persistence
F drives the learning process to pure strategy profiles

within few iterations if the temperature is low. Lenient
Q-learning finds mixed solutions but requires many iter-
ations to converge.

Overall it can be observed that all results are very
sensitive to the parameter settings. Due to the limited
time not all parameter combinations could be taken into
account, as a matter of that some algorithms may per-
form better on some games given different parameters.

Furthermore, simulation and initialization artifacts
as discussed in Appendix A may have biased some re-
sults. The non-convergence to Nash equilibria in simple
games, e.g. FMQ or lenient Q-learning in the PD, may
be such a result. However, all results are valid under
the given assumptions like the initialization and number
of iterations to use. The intricate impact of simulation
analysis stresses the need for analytical means to study
learning behavior. Replicator dynamics and other means
from evolutionary game theory have been successfully
applied for this purpose [14].

Scaling experiments in the DG reveal high perfor-
mance of the Q-learner with an ε-greedy action selection
and FMQ with a Boltzmann action selection under low
temperatures. High exploitation imposed by these ac-
tion selection methods is required to facilitate a quick
dispersion over the actions.

The GG requires quick grouping but also more ex-
ploration to avoid suboptimal solutions with several, ap-
proximately equally sized groups. This implies that a
trade-off needs to be chosen between fast convergence
and optimal convergence. However, conducted experi-
ments need to be repeated with higher number of runs
before final conclusions can be drawn. An interesting
opportunity of future work is also the investigation of
mixed groups of learners. It could be investigated if
FMQ learners initiate quicker grouping in heterogeneous
groups. This article can serve as a basis for future work
investigating the behavior of Q-learners in multi-state or
stochastic games.
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7 Conclusions

The performance of independent reinforcement learners
has been shown to be highly dependent on the correct pa-
rameter tuning. In general, high temperatures enhance
exploration and enable the convergence to mixed equi-
libria while small temperatures enforce exploitation and
increase the probability of convergence to pure strategy
profiles. Stability of the learning process can be sup-
ported by small learning rates and a temperature that
decreases over time. In the context of penalty games, the
adaptations FMQ and lenient Q-learning outperform the
regular Q-learner significantly and converge to the global
optimum.

The contributions of this paper can be summarized
as follows: Stateless Q-learning and the two adapta-
tions Frequency Maximum Q-value (FMQ) and lenient
Q-learning have been compared in games from game
theory. Parameter settings that lead to convergence to
Nash equilibria and the mean time for ε-near convergence
are given. Furthermore, Q-learning has been shown to
scale well with an ε-greedy action selection comparable
with FMQ learning using the Boltzmann distribution
for policy generation. Simulation analysis and visualiza-
tions have promoted a better understanding of learning
dynamics of value iterators in single-state multi-agent
games.
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A Inverted Boltzmann
Distribution

A.1 Initialization of Q-values
The Boltzmann distribution can be inverted to generate
initial Q-value estimations from the desired initial policy
π0. The values that Equation 7 defines asQ−1

i ensure the
correct balance such that the desired policy is generated
by the Boltzmann distribution.

Q−1
i (aj)← τ · log π0

i (aj) (7)

The raw Q-values given by Q−1
i would not necessarily be

achievable by the regular learning process. Once the Q-
values are within the range of the minimal and maximal
utility that the player may encounter they stay within
that bound. A linear transformation into the valid Q-
value space is applied to facilitate a realistic development
from the initial Q-values. Let Li = mins ui(s) and Ui =
maxs ui(s) denote the minimal and maximal utility value
that player i may encounter. Equation 8 shifts the Q-
values such that they are centered with respect to the
valid space of Q-values for the corresponding player.

Q0
i (aj)← Q−1

i (aj)
− 1

2 · (minkQ−1
i (ak) + maxkQ−1

i (ak))
+ 1

2 · (Li + Ui)2 (8)

Equation 9 shows that a shift by an arbitrary number t
cancels out in the Boltzmann distribution.

e(Qi(sj)+t)·τ−1∑
k

e(Qi(sk)+t)·τ−1 =
et · eQi(sj)·τ−1

et ·
∑
k

eQi(sk)·τ−1

=
eQi(sj)·τ−1∑
k

eQi(sk)·τ−1 = pj

(9)

It is important to notice that Equation 8 does not guar-
antee valid Q-values under all circumstances. If the
range of payoffs Ui − Li is smaller than the range of
raw Q-values Q−1

i then the initial Q-values Q0
i will still

exceed the regular space of Q-values which may result in
irregular behavior of the Q-learner.

Ui − Li < maxkQ−1
i (ak)−minkQ−1

i (ak)
→ ( ∃l (Li > Q0

i (al)) ∧ ∃m (Ui < Q0
i (am))) )

A.2 Bounded Convergence
Another result of the bounded learning is a limited con-
vergence toward any pure strategy profile if the Boltz-
mann policy generation is applied. If all players are suf-
ficiently converged to the pure strategy profile s, then

the Q-value of player i for any strategy sj approaches
the utility for the strategy profile (sj , s−i):

lim
t→∞

Qti(sj) = ui(sj |s−i) (10)

Equation 10 predicts that Q-learning converges to any
pure equilibrium with at most:

πi(sj) =
eui(sj |s−i)·τ−1∑
k

eui(sk|s−i)·τ−1 (11)

This implies the convergence is directly dependent on
the payoffs and the temperature τ . For the Prisoners
dilemma as given in Figure 3 the probability to play the
equilibrium action s1 is given in Equation 12.

πi(s1) =
e1·τ

−1

e1·τ−1 + e0·τ−1

=
eτ
−1

eτ−1 + 1

(12)

This probability approaches one when τ is small, zero
when τ is large and is approximately 0.731 for τ = 1.
Recall the assumption that all players are sufficiently
converged, in case of a low probability the rewards to
consider would change hence the probability zero will
never be achieved.
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B Acronyms
BoS Battle of Sexes

CG Climbing Game

CRDG Crisp Reward Dispersion Game

DFP Directional Field Plot

DG Dispersion Game

EGT Evolutionary Game Theory

ESS Evolutionary Stable Strategies

FMQ Frequency Maximum Q value

GG Guessing Game

GT Game Theory

MDPs Markov Decision Processes

MP Matching Pennies

NE Nash Equilibrium From Game Theory

PG Penalty Game

PD Prisoners’ Dilemma

RL Reinforcement Learning
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