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Abstract
There are more and more distributed systems
in today’s world, for which the control decisions
can be taken centralized or decentralized. This
article investigates the balance between central
control and anarchy in multi agent coopera-
tive games. Individual learning is compared
to joint action learners using two different re-
inforcement algorithms - Q-learning and Cross-
learning. While in individual learning each con-
trol decision is learned by exactly one learner,
joint action learning controls a number of deci-
sions that can range from a small partition of
the decision to the full set.
For this purpose the the guessing game and a
spatially constrained grid game are examined
and a measure of central control is introduced.
In the complete n-player guessing game it is
shown that any form of central control yields
convergence to suboptimal policies. In the spa-
tially constrained grid game, a higher level of
central control generally performs better, es-
pecially if the best actions are highly depen-
dent on the agents’ states. However, the maxi-
mal level of central control is very limited due
to the exponential numerical explosion in the
state and action space. Additionally, it is found
that a stateless Nash equilibrium strategy is
amongst the best performing policies.
Keywords: reinforcement learning, Q-
learning, Cross-learning, cooperative games,
central control

1 Introduction
Reinforcement learning in multi agent games has been
studied extensively in the past [4, 6, 15]. Action selec-
tion policies are learned using a numeric reward which is
observed through the environment. This feature makes
reinforcement learning appealing, since as well in real
life, we often only know if an action was good or bad,
but not necessarily know the reasons behind it.

Many research is done in the domain of individual
learning methods, since they are easy to implement and
yield limited complexity. Additionally, no form of com-
munication is needed, since each agent acts on its own.
This assumption generally holds, since in real life, in
many cases the acting agents are spatially distributed
and have only limited communication. However, in some
cases there is a central control, which takes decisions for
a group of agents. The comparison between individual
learning and central control will be the focus of this ar-
ticle.

The main research question is therefore how to bal-
ance central control and individual learning in multi
agent cooperative games to maximize social welfare un-
der constrained time.

To illustrate a situation in real life, where this re-
search is applicable, imagine an economic market, where
new industrial standards are introduced. Each company
has to chose whether to adopt a certain standard or to
keep their own system. These decisions have a big influ-
ence on the profit or loss of companies. If many other
companies decide to adapt to the same standard, it is
advisable to do so as well to get a bigger consumer base.
Thus, the result of the company’s decision is not only
determined by its own action, but on the joint action of
several companies. Additionally, we can have some con-
trolling agencies, which regulate the actions for several
companies. Thus, this research can be used to determine
how many controlling agencies, if any, are advisable, or
whether every company should act on its own.

This article evaluates two well-known learning meth-
ods, Cross-learning and Q-learning in two cooperative
games. Special attention is paid on controlling multiple
decisions at the same time, which means that a higher
percentage of the reward is dependent on the learners’
actions. This is introduced as percentage of central con-
trol. The concepts convergence, Nash equilibria and so-
cial welfare are used for evaluation, while in particular
the maximum social welfare and the speed of conver-
gence are two important performance indices for cooper-
ative games. The games used as testbeds are the n-player
guessing game and a spatially constrained grid coordi-
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nation game.
The rest of this article is structured as follows: Sec-

tion 2 introduces reinforcement learning in the single
agent domain and presents the two learning algorithms,
while Section 3 generalizes the algorithms to the multi
agent domain. Section 4 gives a description the environ-
ment and the evaluation methods, and Section 5 and 6
present the conducted experiments and the discussion of
the obtained results. Finally, Section 7 and 8 close with
conclusions and an outlook on future work.

2 Reinforcement Learning in the
single agent domain

Reinforcement Learning (RL) is a variant of machine
learning, where an agent, for instance a computer pro-
gram or a robot, is learning its behaviour only based on
a signal of reward and punishment. The concept is use-
ful to model difficult tasks, where it is easier to define
the aim of the task instead of knowing how it is done
exactly. The method of RL is imitating a way how an
animal would learn certain behaviours. Likewise, we in-
teract with our environment by performing actions after
which the we observe the effects. This idea of cause and
effect is used in our daily life for building up the knowl-
edge of our world.

In general, in the mathematical RL model, the
learner can be in a finite set of states S and for each
state there is a set of possible actions A. Each action
leads to a certain observable numeric reinforcement sig-
nal, which is the reward of the given actions. The task
for the learner is to maximize the cumulative discounted
future rewards. The RL problem for agents can be for-
mulated as a Markov decision process with discrete time,
finite states and finite actions, that is defined in the fol-
lowing [8]:

• Finite set of possible actions a ∈ A and states s ∈ S
• Initial state: s0 ∈ S
• Transition function: T : S × A × S → [0, 1], where
T gives a probability distribution over S

• Reward function R : S ×A→ R
In general, there are various methods in RL. In the next
subsection, two methods will be introduced - examples
of the policy and value iterator classes.

2.1 Learning behaviour in the RL
environment

While this section considers single agent learning, this
process can be generalized to a multi agent environment,
as explained in Section 3. The task for an agent in the
RL problem can be translated into certain steps for each
learning step t:

• Observe the current state s

• Determine next action a based on a certain action
selection policy π : S ×A→ [0, 1]

• Perform the selected action

• Observe the reinforcement signal (reward) gained
from this action

• Use information about this state-action pair to up-
date the current policy π, if necessary

Thus the agent needs an action selection policy π. In this
article the notation of πs(t, a) is used, which gives the
probability distribution over the actions a when being
in state s and time step t. Thus, the following equation
must hold for all states s and time steps t:

∑
a

πs(t, a) = 1

πs(t, a) ∈ [0, 1]

(1)

There are two principle ways to learn in the RL do-
main, namely policy and value iterating methods [13].
While policy iterators update the action selection policy
directly, value iterators estimate the value of the given
actions and deduce the optimal policy based on these.

Policy iterators only maintain an action selection pol-
icy to approximate the optimal behaviour. More specif-
ically, a random initial policy is used to explore the en-
vironment, while it is continuously updated with the re-
inforcement signal (reward or punishment) observed [4].

Value iterators use the reinforcement signal to up-
date a value estimation function for the value of each
state and afterwards this function is used to determine
a new action selection policy. In other words, an agent
performs actions to estimate the gained value for each
state-action pair and then chooses an action according
to these estimation values [6, 13].

2.2 Cross-learning - A policy iterator

Cross-learning belongs to the class of finite action-set
learning automata that were initially researched in the
1960’s by Tsetlin to model empirical observations of
learning behaviour [4, 14]. Later, learning automata
became a topic in the engineering domain as adaptive
decision makers and recently, they were used in the RL
domain as a basis for multi-agent learning [10].

As described in Section 2, the set of possible actions
A and states S is finite. The general update rule for
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policy πs(t, a) at each time step t is given below [10].

If a(t) = â then

πs(t+ 1, â) = πs(t, â) + αr(t)(1− πs(t, â))
− β(1− r(t))πs(t, â)

and ∀a 6= a(t)

πs(t+ 1, a) = πs(t, a)− αr(t)πs(t, a)

+ β(1− r(t))[(k − 1)−1 − πs(t, a)]

(2)

Where s is the current state, a(t) is the selected action
out of k different actions in the set A, r(t) is the ob-
served reward and α and β ∈ [0, 1] are the reward and
penalty parameters respectively. Depending on α and β
the update scheme is referred to as linear reward-penalty
(LR−P ) if α = β, if β is chosen to be small compared
to α it is called linear reward-ε-penalty (LR−εP ) and for
β = 0 it is called linear reward-inaction (LR−I), which
is also known as Cross-Learning (CL) after the author
of [1]. Since for this article only CL is of interest, the
equation can be simplified to the following:

If a(t) = â then

πs(t+ 1, â) = πs(t, â) + αr(t)(1− πs(t, â))

and ∀a 6= a(t)

πs(t+ 1, a) = πs(t, a)− αr(t)πs(t, a)

(3)

Assuming that r ∈ [0, 1] and continuous, Equations (2)
and (3) maintain the probability distribution given in
Equation (1) [9].

2.3 Q-Learning - A value iterator

As said before, the goal of the RL agent is to maximize
the cumulative future rewards. While policy iterators
maintain and update an estimation of the optimal pol-
icy, value iterators estimate the expected rewards for the
current state-action pairs and derive a policy balancing
exploration and exploitation from these. In order to un-
derstand Q-Learning (QL), the value of a state has to
be explained in further detail. Additionally, the value
of a state-action pair will be introduced as a Q-value.
Afterwards, the Q-learning itself will be explained using
an estimation function for these Q-values. Eventually,
different action selection policies will be presented.

The value of a state equals its own reward plus the
expected discounted reward of its successor states, when
following policy π [11], as shown in Equation (4). In
other words, it tells the agent how profitable it is, to be
in this state. A utility function estimates the utility of

a given state s under policy π.

V π(s) = E[
∞∑
t=0

γtr(t)|π, s0 = s] (4)

This includes a discount factor γ ∈ [0, 1] that controls the
agent’s desire to achieve the goal quickly. Furthermore,
it bounds the infinite sum. A low γ value leads to a
setting where the agent becomes myopic, since the future
rewards are heavily discounted.

If the value function is known, the problem is solved,
since direct utility estimation could be used, which will
not be explained here [11]. However, commonly, the
function is part of the unknown environment that has
to be explored. Hence, the values have to be estimated,
since they are crucial to be able to accurately choose an
action that maximises the total reward. As one solu-
tion for the estimation, the so-called temporal difference
learning can be used. It takes the observed transitions
to update the values of the observed states:

V πt+1(s)← V πt (s) + α(r(t) + γV πt (s′)− V πt (s)) (5)

where α ∈ [0, 1] is the learning rate parameter and t
the current time step. This learning rate should be a
decreasing function in order to let V πt (s) converge to the
correct value [11]. In this way, an estimate of the final
reward is calculated at each state and the state-action
value is updated on every step t on the way. This method
is often called bootstrapping, since it uses estimates to
estimate the values. To link values of states to actions,
the Q-values are introduced. The value of a state is
directly related to Q-values as follows:

V π(s) = max
a

Q(s, a) (6)

Thus, a Q-value is the expected reward when starting at
s and taking action a. If the transition model is known,
it is possible to calculate all exact Q-values iteratively.

Q(s, a) = r(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′) (7)

where T (s, a, s′) gives the probability of reaching state
s′, when taking action a in state s. However, most of
the time, the transition model is not known in advance,
and therefore, the Q-values have to be estimated.

A famous method of Q-learning was proposed by
Watkins [16] in 1989. It iteratively approximates the Q-
values by an estimation function Q̂t for each time step
t:

Q̂t+1(s, a) = Q̂t(s, a)+α(r(s)+γmax
a′

Q̂t(s′, a′)−Q̂t(s, a))

(8)
where α is the learning rate, which can be a constant or
a decreasing function depending on visits of each state,
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and γ is the discount value. It only uses the current es-
timation Q̂t and the observation of the current state’s
reward r(s) to update the Q-values. This is a big advan-
tage, since the transition function and reward function
do not need to be known in advance and are not explic-
itly estimated. For this reason, it is called a model-free
method [11].

Action selection policies
There exist several policies to decide which action should
be taken next. However, there is the problem that the
knowledge about these values is uncertain and incom-
plete. Hence, there has to be a tradeoff between explo-
ration of the unknown and exploitation of the already
learnt. Otherwise, if some decent action was found be-
fore, this will be chosen over and over again, although
there may exist a better one. On the one extreme,
there is greedy selection, which always takes the cur-
rently highest Q-value, and on the other extreme, there
is uniform selection, where each action is selected ran-
domly with equal probability.

Both extremes have shortcomings, which are the non
existing exploration for greedy selection and the non ex-
isting exploitation in the uniform selection. Therefore,
the commonly used policies are soft, meaning that every
possible action has a non zero probability of being taken.
Two common action selection policies are [13]:

• ε-greedy: The action with the highest estimated re-
ward is chosen with probability 1− ε, therefore it is
called greedy. With a small and possibly decreasing
probability ε, a random action will be performed,
in order to provide the exploration, which is partic-
ularly important in the beginning. These random
actions are selected uniformly and independent of
the value estimations. If ε is decreasing to zero in
the limit, this policy approaches the static greedy
policy without any exploration. Therefore, the de-
crease has to be set carefully and it is not well suited
for dynamic environments, which require ongoing
exploration.

• softmax: One possible drawback of ε-greedy is that
it selects the exploration actions uniformly. There-
fore, the worst possible action will be selected with
the same probability as the second best. The soft-
max policy uses a Boltzmann distribution to over-
come this problem. Each action gets weighted, ac-
cording to their action-value estimate Qt(s, a) at the
current state:

πs(t, a) =
eQt(s,a)/τ∑
b e
Qt(s,b)/τ

(9)

were τ is the temperature. A high temperature
scales the function to an almost uniform distribu-
tion, while a low temperature approaches a greedy

selection. This allows a dynamic tradeoff between
exploitation and exploration with possibly decreas-
ing τ to converge to a static greedy strategy. This
approach is favourable, when the action which is
currently estimates with the lowest value should not
be taken with a high probability and the other op-
tions with high Q-values have a good chance being
the best option, since the estimation was not correct
yet due to stochastic effects.

3 Reinforcement Learning in the
Multi Agent Domain

The learning algorithms in the last section were intro-
duced in a single agent environment. This section will
generalize them to the multi agent domain. First, the
differences between the single agent and multi agent do-
main will be discussed and afterwards possible learning
methods in the multi agent domain will be presented.

In contrast to individual learning, there are multiple
agents in the same environment. These can have a task
which involves cooperation or competition. For instance
many games are competitive where each agents tries to
maximize his own reward regardless what the other agent
does. In other games, you can have a cooperative part,
where the agents need to collaborate to achieve a better
reward. An example is the famous prisoners dilemma.
When played iteratively, the players can cooperate to
achieve the maximal reward.

For each game, there are a number of decision to be
taken simultaneously, which are the possible actions of
the players. To perform learning in this domain, there
are several possibilities. On the one hand, each decision
can be controlled by exactly one learner, or on the other
hand one agent can control all the decisions. Addition-
ally, the decisions can be partitioned into groups, where
each group is controlled by a leaner.

The first option is the direct translation of the algo-
rithms introduced and is called individual action learn-
ing. Each agent learns for himself and other agents are
just seen as part of the environment. The second and
third option are called Joint Action Learning (JAL),
where the learning algorithm can be seen as an agent
which controls multiple decisions. The JAL can access
the information of each decision and tries to achieve a
maximal joint reward.

3.1 Individual learning

Individual learning gives one decision to exactly one
agent and applies the RL methods described in Section 2
directly. This implies that coordination of actions can
only be learned based on interactions with the environ-
ment. More specifically, since there is no communication
between the agents, there is no real form of cooperation.
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The acting agents perceive the other agents only as part
of the dynamic environment and ignore their presence or
treat their impact as environmental effects.

If two agents have to do the same to get a good re-
ward, they will learn this eventually, since the reinforce-
ment signal is largest when both choose this decision.
However, this is hard to learn, since choosing the same
action multiple times will lead to an ambiguous rein-
forcement signal based on the other agents’ decisions.
Additionally, if the environment is dynamic, it is hard
to distinguish between mis-coordination and stochastic
effects.

Some advantages of this approach are its simplicity,
since no communication between the agents is needed,
and furthermore, the action and state space is limited.
Additionally, the implementation of this algorithm can
be adapted straightforwardly from the single agent do-
main.

3.2 Joint action learning

In contrast to individual learning, the joint action learn-
ing gives multiple decisions to one JAL agent. This can
be the full set of decision or only a partition. JAL strives
to the best joint reward of the controlled group. This
means for instance for CL and QL that the update func-
tions get more complex, since the update functions need
to be defined for each combination of the possible actions
and states for all the possible decisions.

More specifically, the parameters for the state s and
action a of the update function as introduced in Equa-
tion (3) and (8) for CL and QL become vectors of the
combined states s = (s1, . . . , sn) and the combined ac-
tions a = (a1, . . . , an), where each index i belongs to one
controlled decision [5].

Since the learner controls multiple decisions, the joint
action has to be based on the combined observed states.
This implies that the action and state space grows ex-
ponentially to the number of controlled decision.

Let na and ns be the number of possible actions and
states for each decision and n the number of controlled
decisions. This leads to n N

a possible actions and n N
s

possible states. If na = ns = n the possible state-action
pairs are n2N . Since the growth is exponentially de-
pending on the group size, this can lead to a huge space
complexity for larger N .

However, the advantage is that JAL has more infor-
mation which it can exploit to achieve higher rewards,
especially in cooperative games. Coordination within a
group should be trivial, hence only cooperation between
the groups has to be learned.

4 The environment and the
game

This section will introduce the environment in which
the RL algorithm will be evaluated. Additionally, some
terms from Game Theory (GT) will be presented that
are used to analyze games.

4.1 A cooperation game without spatial
constraints

Imagine the example of the introduction of new stan-
dards in the industry. If there are several standards,
each company has to select one standard to support.
However, its payoff is determined by how many other
companies chose the same standard, since the consumer
base grows with each additional company selecting the
same standard. This can be modeled in the abstract
Guessing Game (GG) [6, 12].

Let n(ai) be the number of agents choosing action
ai and let N be the total number of players. Then the
reward for each action is the same for all agents and is
defined as:

rj(aj) =
n(aj)
N

(10)

In general terms, this means that the reward for each
agent is fraction of the number of agents playing the
same action as the agent itself. The GG considered in
this article is the complete GG, which means that there
are as many actions as players. The game is played re-
peatedly for several time steps. This kind of game is also
called a repeated stochastic game.

4.2 A cooperation game with spatial
constraints

In real life, not everybody interacts with everyone. For
instance, the economic market is usually not as uniform
and interconnected as assumed in the GG. First, the
market is more distributed in segments which are over-
lapping to some extent and second, it is usually not
equally easy for each company to adapt to a certain stan-
dard. These features are captured by the following game.

The game consists of a square grid of the size nxn.
Each cell can have two different states (for visualization
black and white), which are selected randomly with a
certain state bias pblack ∈ [0, 1] representing the proba-
bility of being in state black. For each cell, there is one
decision to be taken which has effects on the neighbour-
ing cells that are directly adjacent to it. Each decision
can be the action black or white and a reward for the
decision is given, if two adjacent decisions are the same.
However, the reward for each decision depends on the
state in which it is in. The payoff matrix is given below,
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where the rows represent the states and the columns rep-
resent the actions.

AB AW
SB 0.2 1
SW 1 0.2

Hence, when being in state black the agent gets a higher
reward when playing white. However, if nobody is co-
operating with it, the reward is 0, thus cooperation is a
crucial factor in this game. The total reward for each
individual cell is the averaged sum of all games with its
adjacent cells. In terms of the market game, the states
can be seen as how difficult it is to adapt to standard
black or white and the actions to adapt to one of the
standards.

Variants of the Game
To evaluate the effects of the state dependency, if the
payoff matrix is changed to get different variants of the
game. For instance, the payoff matrix can be as follows:

AB AW
SB 0.5 1
SW 1 0.5

In this case, the difference between the two actions is
not as large as in the original case. Hence, the reward
when choosing the inferior action of the cell’s own state
is still relatively high, which means that the state is less
important. This setting is called State Less Important
Setting (SLI-Setting). Another variant is achieved with
the following payoff matrix:

AB AW
SB 1 0.2
SW 1 0.2

The state is not important anymore for determining the
decision, since in both states the payoff is the same. This
will be called the State Independent Setting (SI-Setting)
from now on.

4.3 Analyzing performances in games
For analyzing the games and the performances of the
learners, there are some concepts from GT that aid in a
more specific evaluation. A game has a number of players
n, a set of states S in which the players can be in and
a set of actions A the player can take. For competitive
games, the most well known solution concept is the Nash
Equilibrium (NE). A set of strategies (π∗1 , . . . , π

∗
n) for all

players is called a NE, if and only if there is no player
that has an incentive for deviation, if all other agents
keep their policies fixed [2, 3]. This yields stability, since
if there is no incentive to deviate, the policies remain
stable.

In the complete GG there are N pure NE, one for
each action. This is when each player chooses the same

action. Any deviating player would get much less re-
ward, since he would be the only one in this group.
Therefore, as long as there are two groups, you have
always the incentive to join the other equally large or
larger group to improve your own reward until all play-
ers take the same action [6].

Likewise, in the more complex game with spatial con-
straints, there are two pure NE when all agents play the
same action regardless of the state. As a result, any de-
viating player would get no reward in this case, since
nobody else is playing his action.

Social Welfare
For cooperative games, the goal is to maximize the the
joint reward of all players. Hence, the social welfare ω of
a strategy π is the total sum of the individual rewards:

ω(π) =
∑
i

ri(πi)

where ri(πi) defines the reward for each individual i
when following strategy πi. Thus, for a cooperative
game, the best strategy profile π∗ is the one that maxi-
mizes the social welfare.

π∗ = arg max
π

ω(π)

Since the games described above are cooperative games,
the social welfare achieved by the learners will be used
as the main measure for evaluating the performance.

Convergence and Confidence Intervals
Another measure to analyze performance in games is the
time to converge for the learners. As distance metric the
differences in average social welfare for subsequent time
steps is chosen. This means that the achieved social wel-
fare ω does not change more than a very small threshold
value ε after some iteration T onwards, when compared
to the mean of all social welfares after T time steps:

ω converged to ω′ at T
↔ ∀t (t ≥ T →|mean(ωT,...,end)− ωt| < ε)

This definition can be interpreted intuitively as all values
after convergence remain in a certain interval of length
2 ∗ ε. Once the specific T is known, a confidence inter-
val for the mean convergence value is estimated using a
t-distribution with Tmax − T − 1 degrees of freedom. If
the data is averaged over a large enough number of runs,
the central limit theorem holds [7]. This confidence in-
terval is used to compare the performance of the different
learners.

4.4 Percentage of central control
Since this article examines the effect of Central Control
(CC) vs. anarchy, a measure of CC has to be intro-
duced. An intuitive definition will be used, which is the
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1 2 1 1 1 1
3 4 2 2 1 1

Table 1: Distribution of the groups for the 2x2 grid. 4x1,
2x2 and 1x4 from left to right.

1 2 3 1 1 2 1 1 1 1 1 1
4 5 6 4 5 2 2 2 2 1 1 1
7 8 9 4 3 3 3 3 3 1 1 1

Table 2: Distribution of the groups for the 3x3 grid. 9x1,
4x2+1x1, 3x3 and 1x9 from left to right.

percentage of reward that is dependent on the decisions
that the learner controls. Hence, in the GG this would
mean an individual learner would have 1

N control over
the reward it gets. The rest is determined by the actions
of the other agents. In general, a group of size n, has
control over n

N of the reward.
In the spatially constrained game not only the size

of the group is important but also the location of the
controlled agents. For instance, as shown in Table 1, the
individual learner 1x4 has no control over the reward,
since it is completely dependent on the other agent’s ac-
tions. Likewise, the groups of size two have 50% control,
since for both agents, one adjacent agent is controlled
within the group and another one outside. Of course,
the full joint action learner has full control over the re-
ward.

5 Experiments
This section explains the experimental setup regarding
the two games introduced in Section 4 and the different
learning algorithms. For the GG the performance of in-
dividual and joint action learning was evaluated for the
sizes of N = 4, N = 9 and N = 16. The group sizes
were 4x1, 2x2 and 1x4 for N = 4, 9x1 and 3x3 for N = 9
and 16x1, 8x2 and 4x4 for N = 16.

Since the possibilities for JAL rise exponentially, the
full space joint action learning for N ≥ 9 is not con-
sidered, since for N = 9 it already yields 99 ≈ 3.87e8

possibilities. CL is tested with α = 0.1. Since the game
is played repeatedly and the chosen action does not have
any influence on the future state, the discount value is
not taken into account. Thus, QL has the same learning
rate α = 0.1 and additionally γ = 0. As action selec-
tion policy for the Q-learning, softmax was chosen with
a constant temperature of τ = 0.1. The temperature is
chosen to provide a good balance of exploration and ex-
ploitation. Additionally, in a dynamic environment with
stochastic influences a constant amount of exploration is
desirable. Therefore, the temperature is not decreased

The experiments with the spatially constrained game
were conducted on the following grid sizes: 2x2, 3x3 and
4x4 using Cross-learning and Q-learning. Furthermore, a
random action selection policy is used as a baseline com-

1 2 3 4 1 1 2 2
5 6 7 8 3 3 4 4
9 10 11 12 5 5 6 6
13 14 15 16 7 7 8 8

1 1 2 2 1 1 1 1
1 1 2 2 1 1 1 1
3 3 4 4 2 2 2 2
3 3 4 4 2 2 2 2

Table 3: Distribution of the groups for the 4x4 grid. 16x1,
8x2, 4x4 and 2x8 from top-left to bottom-right.

3x3 4x4
Groups % CC Groups % CC

9x1 0.00 16x1 0.00
4x2 (1-4) 41.67 8x2 (1,2,7,8) 41.67
+1x1 (5) 0.00 8x2 (3-6) 29.17
average 37.04 average 34.42
3x3 (1,3) 55.56 4x4 70.83
3x3 (2) 38.89 2x8 77.08
average 47.23 1x16 100.00

1x9 100.00

Table 4: Calculated percentage of CC depending on the
group sizes for the 3x3 and 4x4 grid game. The numbers in
brackets refer to the groups shown in Table 2 and Table 3 for
3x3 and 4x4 respectively.

parison. The groups for each grid size were distributed
as seen in Table 1, 2 and 3. For the 4x4 grid, the full
joint action learning has 232 ≈ 4.3e9 possibilities. Thus
it is not feasible anymore, since the state and action
space are too large to handle. Therefore, it is left out of
the experiments. The resulting percentage in CC of the
groups for 2x2 is 0%, 50% and 100% (see Section 4). For
all other settings Table 4 can be consulted.

Each setting was evaluated for each variant of the
game explained in Section 4 with a constant state bias
pblack = 0.5. Additionally, the influence of an abrupt
change in the state bias pblack is analyzed. This is done
by switching between the original value and the value of
pblack = 0.7 after each quarter of the total time steps.
In the real life application, this switch can be explained
as for instance the tendency of being able to introduce a
certain standard easier than the other one. The learning
parameters for Cross-learning and Q-learning are set to
the same values as in the GG.

For each setting, the social welfare is plotted over
10,000 time steps and averaged over 10 independent runs
with a running average window of 200 to smooth the re-
sults. Additionally, the average number of time steps to
converge and the 95% confidence interval of the achieved
social welfare after convergence are calculated. The best
possible actions are computed beforehand by exhaustive
search to get a theoretical maximum expected social wel-
fare as performance measure.
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Figure 1: Results of the GG for N = 4 (left), N = 9 (center)
and N = 16 (right). Top row: CL with α = 0.1, central row:
QL with α = 0.1 , τ = 0.1 and bottom row: QL with α = 1,
τ = 0.1.

6 Results & Discussion
This section presents the results obtained by the exper-
iments introduced in Section 5. The analysis focuses on
the performances of the different group sizes and the dif-
ferences between Cross-learning and Q-learning.

6.1 Results for the GG

Figure 1 shows the results for the GG and the different
settings. For visualization only the first 2500 time steps
are plotted, since the learners converged before and the
differences in the time to converge can be seen easier.

Since the difficulty to cooperate on a single action
with more agents rises, it is expected that the larger
N the less overall social welfare is achieved. Likewise,
it is expected that convergence takes longer with more
agents. This can be seen when comparing the graphs
from left to right. However, it is striking that the sep-
aration into groups controlled by JAL, has a negative
effect on the total social welfare. This means by facili-
tating coordination by CC the results deteriorate quite
a lot. For instance, even for the simplest case of N = 4
the CL looses roughly 10% when splitting into groups of
two or even 20% when having full joint control. If there
are more decisions to be taken, JAL achieves even less
that than 50% of the individual learner.

QL, on the other hand, performs decently in the
smallest case of N = 4 for each group size. However,
the individual learner still outperform the larger groups.
Furthermore it is notable, that while for N = 9 the in-
dividual learners still reach the optimum, in N = 16
and α = 0.1 QL algorithms converge at the very subop-
timal setting in which pairs of agents choose the same
action. When looking at α = 1, the individual learner
reaches optimum again, while the performance of the

other groups stays equally bad. A high learning rate for
QL is advisable in this game, since a change to a bet-
ter group has to be rewarded that much that the learner
stays in the same group.

It might be counterintuitive that JAL is outper-
formed by individual learning, since the coordination
within the groups seems easier. However, it can be ex-
plained by the metaphor of finding the needle in the
haystack. The more decisions are controlled by JAL,
the harder it is to find the one action which leads to the
highest reward. Especially, when actions of other JAL
groups have a high influence on the reward, it is hard
to decide if the low reward was due to mis-coordination
within the group or mis-cooperation between the groups.

To sum up, for the GG it can be seen that CC is
not desirable, since the individual agents outperform the
joint action learners. Hence, the information gain by
knowing the state of some other agents is outmatched by
the rise in complexity to control more than one decision.

6.2 Results for the grid game
Before discussing the results on the various grid sizes
some general observations can be made. First, a state
unconscious learner can maximally achieve the following
average social welfare independent from the grid size.

ωstateless =
max(pblack ∗ r(AB |SB) + (1− pblack) ∗ r(AB |SW ),

pblack ∗ r(AW |SB) + (1− pblack) ∗ r(AW |SW ))

where r(AW |SB) is the reward of cooperating on action
W given stateB and vice versa. This leads in the original
setting to ωstateless = 0.6, and in the SLI-Setting to
ωstateless = 0.75. These are the pure NE, when all agents
coordinate on playing the same action regardless of their
states.

Second, there is the strategy of always playing the
action that yields highest reward given the current state
if other surrounding decisions are the same. When ex-
amining the reward structure in the original game and
the SLI-Setting, it is found that the highest reward for
cooperation is 1, which is always the alternative action
of its own state. Therefore, it will be called alternating
strategy. The resulting average social welfare can be cal-
culated, since in pblack of the cases any surrounding ac-
tion will have the same color. Thus, it is ωalternate = 0.5
for pblack = 0.5.

Lastly, when looking at the results in Table 5, 6
and 7, it can be seen that in the SI-Setting most learn-
ers achieved a reward close to ωmax = 1. Only the large
group with JAL stayed well below the optimum, which
can be explained by the exponentially increasing number
of possible state-action pairs. Since there is not much
else to derive, this setting is left out in the upcoming
figures and discussion. The results of Table 5, 6 and 7
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States

Best Actions

States

Best Actions

Figure 2: The best possible action(s) for each state of the
2x2 grid game with the original setting. The first and third
row show all possibles states in the 2x2 grid game. Below each
state the combined action yielding maximal social welfare is
plotted.

Original Setting
Time steps T CI for ω

Groups CL QL CL QL
4x1 5440 9274 0.4997±0.0069 0.4856±0.0081
2x2 1888 5961 0.6361±0.0066 0.5924±0.0059
1x4 2855 3709 0.7004±0.0061 0.7231±0.0068

SLI-Setting
4x1 5016 908 0.6244±0.0069 0.7448±0.0047
2x2 1151 7451 0.6790±0.0065 0.6608±0.0097
1x4 3331 6126 0.7771±0.0050 0.8036±0.0098

SI-Setting
4x1 274 209 1.0000±0.0008 0.9999±0.0004
2x2 461 272 1.0000±0.0010 0.9996±0.0010
1x4 2640 7230 0.9336±0.0056 0.9663±0.0070

Table 5: Results for the 2x2 grid. The time steps until
convergence T with ε = 0.025 and the 95% confidence interval
of the achieved social welfare ω for pblack = 0.5 are shown.

are summarized in Appendix B Figure 9, 10 and 11 re-
spectively to get a more intuitive feeling about the mean
convergence values depending on the different setups.

Results for the 2x2 grid game
As said in Section 5, to evaluate the results on the grid
sizes, the best possible social welfare was calculated be-
forehand and then plotted with the achieved social wel-
fare of the different learners.

In the smallest grid size that was examined, it is still
feasible to plot all different states, since there are in to-
tal 24 = 16 states. Additionally, there are for each state
exactly the same amount of joint actions which can be
taken. Therefore, the total number of possibilities is
28 = 256, which can be searched exhaustively. The re-
sults are shown in Figure 2, where the best joint actions
in the original setting are plotted to the corresponding
state. The 2x2 grid game has only two possible best
actions, which are all agents playing black or all agents
playing white, depending on the state the majority of

Original Setting
Time steps T CI for ω

Groups CL QL CL QL
9x1 271 171 0.4997±0.0035 0.4910±0.0048

4x2+1x1 1195 255 0.5779±0.0047 0.5510±0.0046
3x3 2232 3868 0.5911±0.0056 0.5563±0.0068
1x9 4804 3 0.3208±0.0086 0.3004±0.0040

SLI-Setting
9x1 771 818 0.5791±0.0044 0.7444±0.0040

4x2+1x1 1172 2849 0.6473±0.0044 0.6862±0.0065
3x3 2165 1434 0.6390±0.0059 0.6157±0.0059
1x9 6087 29 0.3968±0.0079 0.3755±0.0036

SI-Setting
9x1 273 211 1.0000±0.0007 0.9999±0.0004

4x2+1x1 440 379 0.9999±0.0011 0.9996±0.0018
3x3 1298 5564 0.9748±0.0033 0.9718±0.0109
1x9 6783 18 0.3452±0.0084 0.3012±0.0048

Table 6: Results for the 3x3 grid. The time steps until
convergence T with ε = 0.025 and the 95% confidence interval
of the achieved social welfare ω for pblack = 0.5 are shown.

Original Setting
Time steps T CI for ω

Groups CL QL CL QL
16x1 285 107 0.4996±0.0032 0.4915±0.0038
8x2 1462 1144 0.5660±0.0049 0.5326±0.0048
4x4 4165 3262 0.6046±0.0066 0.5969±0.0086
2x8 6922 2 0.3442±0.0094 0.3014±0.0025

SLI-Setting
16x1 725 3074 0.5863±0.0037 0.7448±0.0028
8x2 1031 3592 0.6341±0.0044 0.6782±0.0057
4x4 3982 4835 0.6633±0.0070 0.6721±0.0083
2x8 5557 1 0.4152±0.0119 0.3763±0.0037

SI-Setting
16x1 279 209 1.0000±0.0007 0.9999±0.0004
8x2 461 402 0.9999±0.0010 0.9995±0.0017
4x4 2732 7001 0.8956±0.0050 0.9287±0.0083
2x8 8488 12 0.4053±0.0116 0.3029±0.0046

Table 7: Results for the 4x4 grid. The time steps until
convergence T with ε = 0.025 and the 95% confidence interval
of the achieved social welfare ω for pblack = 0.5 are shown.

the agents is in. Likewise, since pblack = 0.5, this game
is symmetric.

The results for the different learners are presented
in Table 5, Figure 3 and Figure 4. When comparing Q-
learning with Cross-learning, it can be seen, that QL con-
verges slower. However, these results have to be treated
with care. Especially, when comparing the calculated
numbers with a visual inspection of the figures, the cal-
culated Time steps to converge for the individual CL
in original and the SLI-Setting and for QL in the origi-
nal setting seem unlikely. The individual learning (4x1)
and groups of size two (2x2), seem to converge well be-
low 1000 iterations, although the calculated numbers are
much higher.

This can be explained by the high variance in average
social welfare, when the decisions are taken according to
the alternating strategy. For instance, when regarding
Figure 2, the first state of each row will lead to an average
social welfare of 1 and the second last state in the row will
yield zero reward, since there are not any two adjacent
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Figure 3: Plots for the 2x2 grid using the original setting.
The top row represents the results with constant state bias,
while the bottom row represents the switching state bias.
Left: Cross-learning, right: Q-learning

decisions equal. With a large enough number of runs this
effect will be equalled out, but with averaging over 10
runs, there is a high possibility that a single run induces
a deviation that is larger than ε.

Only the full space joint action learning achieves a
value higher than the ωstateless for the original setting
and the SLI-Setting. Likewise, for the original setting,
the more actions are controlled by the learner, the more
reward can be achieved.

Another interesting result is that while individual QL
and individual CL both converge in the original setting
to the strategy ωalternate, individual QL converges to the
ωstateless in the SLI-Setting. This might be since the
probability of exploration is high enough and the value
achieved by the NE-strategy is a stronger incentive in
the SLI-Setting. In the original setting the differences
between ωstateless and ωalternate is 0.1, while in the SLI-
Setting it is 0.25, which is 50% more for the NE-strategy
in comparison to the alternating strategy. Hence, QL
adapts to the better strategy only when the incentive is
high enough.

For switching state bias in the original setting, the
general order of performances does not change much.
When the state bias pblack rises, the black states are vis-
ited more often. Therefore, there has to be a difference
in the expected social welfare, but for the learning pro-
cess as a whole it does not change. Since full joint action
learning has complete information, it is expected to be
less effected by the change. This can be confirmed by
the results as shown in Figure 3. Additionally, the indi-
vidual and 2x2 CL are effected by the change, but their
differences in reward remains roughly the same.

In contrast, the individual and 2x2 QL achieve quite
similar rewards as soon as the state bias rises and drop
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Figure 4: Plots for the 2x2 grid using the SLI-Setting. The
top row represents the results with constant state bias, while
the bottom row represents the switching state bias. Left:
Cross-learning, right: Q-learning

back to the old levels again as soon as the state bias drops
again. That dramatic impact on QL can be explained by
the constant exploration, i.e., by fixing the temperature.
Therefore, the individual learner and the groups of 2x2
have the chance to adapt to the changes while the CL
converges to a fixed strategy. Additionally, the nature
of smaller groups is more flexible to adapt to changes in
the environment, while the larger groups need longer to
take notice that the environment has changed.

In the switching SLI-setting, most of the CL and QL
groups converge to a mixed strategy of preferring the al-
ternate action of the dominant state even when being in
the other state. This means, if pblack rises, action white
is chosen with a higher probability, even when being in
state white. Individual Q-learning, on the other hand,
converges to ωstateless with equal probability of select-
ing white or black as action. Therefore, the average over
all runs results in the straight line as seen in Figure 4
bottom right.

Conclusively, in the 2x2 grid game, full joint action
learning is advisable, since it yields the highest rewards
for each setting. However, when the state is less impor-
tant, individual QL is quite close to the performance of
the centrally controlled group at a much higher speed of
convergence.

Results for the 3x3 grid game
Coming to the larger grid size of 3x3 the resulting plots
are shown in Figure 5 and Figure 6. Additionally, Table 6
gives an overview on the calculated confidence intervals
and number of time steps to converge. When examin-
ing the figures, it is evident that the overall performance
has decreased when comparing to the theoretical max-
imum value. For every case, the simple NE strategy
would outperform all of the learners. That said, it can
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Figure 5: Plots for the 3x3 grid using the original setting.
The top row represents the results with constant state bias,
while the bottom row represents the switching state bias.
Left: Cross-learning, right: Q-learning

be seen that the general trends are the same as in the
smaller grid size, with a higher level of dependency a
higher value is achieved, although in both settings 3x3
is only barely better than 4x2+1x1. This might relate
to the small comparatively small increase in CC between
the two settings as seen in Table 4. The setting of the
groups at 3x3 mean that on average only roughly 50%
are determined by decisions taken by JAL, the rest is in-
fluenced by the other decisions. Hence, taking the same
action might lead to totally different rewards. For the
setting of 4x2+1x1 the reward depends roughly 40% on
the groups’ own action, which is not that much less than
in the 3x3 setting. Therefore, the rewards are similar.

Furthermore, CL with group size 3x3 in the original
setting almost achieves the value of ωstateless = 0.6.

Remarkably, the achieved social welfare with full
joint action learning and QL does not change at all
over the whole 10,000 iterations. When controlling nine
agents, with two actions and two states each, the total
number of possible state-action pairs reach 218 = 262144,
which is a multiple of the total number of time steps.
Therefore, it is as good as playing random actions, since
each state is just not visited enough to achieve a proper
learning. The similar reasoning holds for CL, even
though the value does rise a bit as seen in the top left
of Figure 5 and Figure 6, but still it is nowhere near to
convergence.

Interestingly, the order of the performance of the dif-
ferent group sizes in QL reverses from the original set-
ting to the SLI-Setting. While in the original setting
3x3 scored highest and individual learning lowest, this
is reversed in the SLI-Setting. This is the case, since
the NE strategy is achieved easier with a lower level of
CC. In the GG, which has not state, it is seen that it is
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Figure 6: Plots for the 3x3 grid using the SLI-Setting. The
top row represents the results with constant state bias, while
the bottom row represents the switching state bias. Left:
Cross-learning, right: Q-learning

advisable to use individual learning. This can be trans-
ferred to the SLI-Setting. The state is less important
and the NE strategy yields higher reward than the alter-
nating strategy. Thus that the individual learner adopts
to a NE strategy easier than JAL is consistent with the
results of the GG.

Additionally, it is notable that for CL with switch-
ing state bias in the SLI-Setting only the groups of 3x3
and the full space learning seem to be influenced by the
change in state bias. This is probably due to the fact
that the other settings converge equally likely to prefer-
ring black and to preferring white, which is on average
equalled out to the straight line.

On the other hand, an interesting result is that the
individual QL in the switching SLI-Setting drops as soon
as the state bias changes, while all other settings stay the
same or rise. This is probably due to stochastic effects,
where it converged slightly more often to the action black
before the state bias changed. With the increase in pblack
the action black becomes inferior, and thus the average
social welfare drops.

To sum up, already with a grid size of 3x3 full joint
action learning is not advisable anymore, since it is just
too complex to achieve good results in reasonable time.
Furthermore, it can be seen that it is important how
interconnected the groups are, since the groups of 3x3
do not perform a lot better than 4x2+1x1. Lastly, it can
be concluded that with QL the less important the states
are, the less % of CC is advisable, since it is easier to
converge to a NE strategy.

Results for the 4x4 grid game
The results for the largest grid size are shown in Fig-
ure 7, Figure 8 and Table 7. In the original setting,
the advantage of a higher percentage of CC can be seen
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Figure 7: Plots for the 4x4 grid using the original setting.
The top row represents the results with constant state bias,
while the bottom row represents the switching state bias.
Left: Cross-learning, right: Q-learning

again. However, for the largest group size of 8x2, the
same applies as for the full joint action learning in the
3x3 grid. It has too many possibilities to evaluate with
only 10,000 iterations. Individual learning converges at
ωalternate = 0.5 and only the 4x4 CL and QL achieve
the same as ωstateless = 0.6. These are similar results as
found in the 3x3 setting.

Again, with switching state bias, the CL converges
too early to really benefit of the better expected reward,
while QL is able to adapt its strategy, yielding a much
higher reward when pblack = 0.7 for all group sizes. Sim-
ilar to the other grid sizes the social welfare drops again
to the old level as soon as the state bias is changed back.

When regarding the SLI-Setting presented in Fig-
ure 8 the general trends are the same as for 3x3. For
CL, the difference in CC is visible again. It takes much
more time steps to converge for a higher level of CC,
but eventually yielding a higher reward. However, in Q-
learning the less controlled groups, especially the individ-
ual learner converge at the ωstateless = 0.75 and thereby
outperform the groups of 4x4 with a much higher level
of CC. This is also consistent with the results in the 3x3
grid game.

Regarding switching state bias, the results for CL
are very similar to those at constant state bias. On the
other hand, for QL the groups of 8x2 are able to adapt
to the changed state bias and therefore outperform the
other settings when the state bias has changed. After-
wards, it drops back to its old level, while the individual
learner converges equally likely to one of the NE strate-
gies, which averages to the line at ωstateless = 0.75.

Conclusively, in 4x4, the results are similar to the
results seen in the other grid sizes. In general, in the
original setting a higher level of CC performs better at
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Figure 8: Plots for the 4x4 grid using the SLI-Setting. The
top row represents the results with constant state bias, while
the bottom row represents the switching state bias. Left:
Cross-learning, right: Q-learning

the expense of high computational complexity. When
the state becomes less important the incentives to adopt
a NE strategy rise. However, only the individual QL
achieves the ωstateless = 0.75. With changing state bias,
the CL converges too early to benefit from the better
expected rewards, while the smaller groups and QL are
able to profit most from the change in the environment.

7 Conclusion
The performances of the learners have been shown to be
dependent on the different levels of CC and the correct
parameters. Additionally in the GG, it has be shown
that CC does not yield better rewards, in contrast, it
resulted in much worse rewards. For the grid game it
has been shown that the rise in CC, in general leads
to better rewards in the original setting. However, the
complexity rises exponentially when increasing the group
sizes for JAL. Thus, the number of time steps has to be
balanced with the number of possible states to facilitate
convergence.

Additionally, it has been found that a setting where
the controlled decisions are highly interconnected are
preferable, since they yield higher rewards with only
slowly increasing complexity. For instance the groups
of 4x4 in the 4x4 grid game already have a CC of more
than 70%, while still being reasonable complex in terms
of possible state-action pairs.

Conclusively, it has been shown that as soon as the
states become less important, a high level of CC actually
hinders convergence to a higher NE strategy. Hence, the
optimal balance of CC and anarchy is very dependent on
the task.

With respect to the analogy of the industry introduc-
ing standards, it can be seen that if a controlling agency
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has to be deployed, it should be only on a highly in-
terconnected number of companies. Furthermore, it is
impossible to achieve the maximum social reward with
full joint action learning in a realistic time frame. Hence,
a certain level of self-control (anarchy) is desirable.

On the other hand, it can be concluded that an
agency, which would force to introduce a certain stan-
dard for everybody regardless of their states, can also
be preferable. As seen in the experiments, the social
welfare of ωstateless is more than most learners achieved
after convergence.

The contributions of this paper can be summarized
as follows: the value iteration method of Q-learning
has been compared with the policy iteration method of
Cross-learning. Additionally, the consequences of differ-
ent levels of CC where compared in the n-player Guess-
ing Game and an abstract spatially constrained grid
game. Furthermore, it has been shown that while full
joint action learning yields the highest reward, it is in-
feasible for most settings due to its complexity.

Lastly, it has been shown that JAL is preferable when
having easily separated highly interconnected groups and
with games where the rewards are heavily state depen-
dent. This is the case in many real life applications.
Learning in the real life is heavily dependent on the indi-
viduals’ states, since knowledge of each individual differs,
and furthermore, it is generally possible to separate the
population into highly interconnected groups. Hence,
JAL with groups is the best choice, since this gives the
benefits of coordination at a reasonable expense of com-
plexity.

8 Further Outlook

This section will propose some ideas which could be re-
searched in the future. The results can be evaluated on
different games, for instance the proposed traffic simu-
lation model could be used to confirm the results found
in this paper.

Furthermore, the performance of an “environment
conscious individual learner” could be tested in compar-
ison to the introduced JAL. The environment conscious
individual is aware of its adjacent states, but does not
know or decide upon their actions. This could lead to
some interesting results while not increasing the com-
plexity too much, since each agent has at most four
neighbours. Hence, the maximal number of states is 25,
which can be handled easily, since there are still only two
actions.

Another interesting option for a learner could be if
each learner votes for all the decisions on which the re-
ward of a certain cell depend upon. Hence, the CC is
theoretically increased to 100%, while the actually per-
formed actions are the outcome of the votes given by

each learner. This would increase the complexity to at
most 210 for the central fields, since we have four neigh-
bours and the own agent with two states and actions
each.
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A Acronyms
CC Central Control

CL Cross-Learning

GG Guessing Game

GT Game Theory

JAL Joint Action Learning

NE Nash Equilibrium

QL Q-Learning

RL Reinforcement Learning

SLI-Setting State Less Important Setting

SI-Setting State Independent Setting
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Figure 9: Summarized results for the 2x2 grid game. The
mean convergence value of the social welfare is plotted de-
pending on the percentage of CC.
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Figure 10: Summarized results for the 3x3 grid game. The
mean convergence value of the social welfare is plotted de-
pending on the percentage of CC.
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Figure 11: Summarized results for the 4x4 grid game. The
mean convergence value of the social welfare is plotted de-
pending on the percentage of CC.
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