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Abstract
This work focuses on the integration of Opponent
Modeling (OM) in two player repeated games. For
this purpose, a theoretical analysis of strategies
and best response strategies is given. This anal-
ysis explains why OM can be a key to long-term
best response behavior. It is shown, that Oppo-
nentModels based on Partially ObservableMarkov
Decision Processes (POMDPs) generalize a broad
range of existing OM techniques. As an instance
of a POMDP based learning algorithm, a variation
of McCallum’s Utile Distinction Memory algorithm
is presented. This technique is based on Baum-
Welch maximum likelihood estimation and uses a
t-test to adjust the number ofmodel states. Exper-
imental results demonstrates that this algorithm
can identify the structure of some popular simple
strategies as for example Tit-for-Tat. It is also able
to approximate the behavior of more complex ex-
amples like Q-learning.

1 Introduction
Games frequently serve as a model to study effects and be-
haviors that can be observed in economy, society and tech-
nology. A famous instance is the Prisoner’s Dilemma which
will serve as one of the main examples throughout this pa-
per: Two criminals are interrogated independently by a po-
lice officer. Each of them has the option to “defect”, i.e. to
incriminate his companion or to “collaborate”. Depending
on their answers, their sentences will be more or less severe
(see [1] for details). The name Iterated Prisoner’s Dilemma
(IPD) will be used to refer to a variant of this game where
the same scenario is repeated an indefinite number of times.
Felegyhazi et al. described one particular real world appli-
cation of games like the IPD [12]: In ad-hoc networks, each
node can decide to either route packages or to block them,
preferring his own traffic. The rewards associated with this
scenario resemble the ones for the IPD. Furthermore, the
Prisoner’s Dilemma is widely used to explain price setting
in an economic duopoly [22].

In the field of Multi-Agent Learning (MAL), games fre-
quently serve as a framework for analyzing the behavior of
learning techniques in multi-agent environments. Shoham

et al. pointed out that there are several motivations for
studying the behavior of agents in aMAL setting [23]. One of
them is the computational perspective, the interest to compu-
tationally find characteristics of a gameat hand, as for exam-
ple equilibria. The descriptive perspective refers to the anal-
ysis of characteristics of learning algorithms in a MAL set-
ting. Finally, there is the prescriptive perspective which aims
at findingwell performing strategies. This paper will mostly
focus on the prescriptive approach.

Well known learning algorithms as for example Q-
learning have turned out to converge to the Nash equilib-
rium “always defect” in the IPD (see Section 3). It will be
demonstrated, in how far this is a suboptimal outcome and
how Opponent Modeling (OM) can lead to better perfor-
mance. In particular if it is assumed that the opponent’s in-
ternal dynamics base on a Partially ObservableMarkov Deci-
sion Process (POMDP). A lot of literature treats the problem
of optimal learning in partially observable environments.
This paper will highlight a variant of the Utile Distinction
Memory approach byMcCallum [20, 21] as a particular exam-
ple. It is shown experimentally, that this technique indeed
can be used as an OM algorithm.

For this purpose, the following section will provide sev-
eral preliminary definitions. Subsequently, a theoretical
analysis of the concept of optimality in games will be pre-
sented which also motivates the use of OM. Section 4 intro-
duces and analyzes previous results on this problemandSec-
tion 5 builds a link between OM and the study of POMDPs. In
the subsequent section, the algorithmswhichwill be investi-
gated in this paper are presented and Section 7 provides ex-
perimental results. Finally, a conclusion will be drawn and
the findings will be discussed.

2 Preliminaries
Before turning to the analysis of optimality in games, this
section provides fundamental definitions and preliminaries
for the upcoming discussion. Firstly, the notions of games
and strategies are introduced; secondly the concept of Rein-
forcement Learning is outlined.

2.1 Games and Strategies
This paper will concentrate on iterated stateless two-player
games, mostly at the example of the IPD, even though some
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of the finding can probably be generalized to broader frame-
works as for example Markov Games [19]. This section seeks
to formalize the notion of iterated two-player games. The
definitions used in this paper mostly follow the formalisms
used by Carmel and Markovitch [8] and extend them by al-
lowing mixed (i.e. stochastic) strategies.
Definition 1. A two-player game is a tuple G =
(A0, A1, u0, u1) where Ai = {0, . . . , nai} is the set of
actions available to player i and ui : A0 × A1 → R is player i’s
utility function [8].

The utility describes the desirability of each pair of ac-
tions to a player. An example for such a game is the classic
Prisoner’s Dilemma described in the introduction. Its utility
matrix is given below:

collaborate defect
collaborate 3, 3 0, 5

defect 5, 0 1, 1
Another popular example for a two player game is Battle

of the Sexes. In this game, a couple wants to spend time to-
gether. This can happen either at the opera or at a football
match. If they fail to meet, neither player receives a reward.
If, however, both decide for the football match, the man will
get a slightly higher payoff than thewoman, who in turnwill
be better off, if the date takes place at the opera. The payoff
matrix for this game looks as follows:

opera football
opera 3, 2 0, 0

football 0, 0 2, 3
A new class of games can be created by repeat-

ing a two-player game infinitely or indefinitely often.
h =

(
(a

(0)
0 , a

(0)
1 ), (a

(1)
0 , a

(1)
1 ), . . . , (a

(n−1)
0 , a

(n−1)
1 )

)
shall

be called a history of a game of length n and H will be the
set of all histories. The empty history shall be denoted by
∅. Moreover, the notation h : (a0, a1) shall denote the con-
catenation operation that yields the history h followed by
player 0 playing a0 and player 1 playing a1.

A strategy Si : H×Ai → [0, 1] is a function whichmaps
from a history of a game to a probability distribution over all
pure actions, or equivalently from a history to amixed action.
Definition 2. A two-player repeated game based on a stage
gameG is a tupleG# = (G,S0, S1, U0, U1) where Si is the set
of all strategies for player i andUi : S0×S1 → R is the expected
long term utility of playing S0 against S1 for player i.

For the repeated game, the utility functions should cap-
ture the idea of long term effects of an action. A popular
choice for Ui is the expected sum of discounted rewards of
a pair of strategies:

Ui(S0, S1) = E

 ∞∑
j=0

γjr
(j)
i



where r
(j)
i is the reward player i receives j steps into the

future and 0 ≤ γ < 1 is a discount factor which controls the
trade-off between immediate rewards and long term gains
[19].

Using the notion of discounted reward sums, a recursive
scheme resembling the Bellman equation can be derived.
Let UH

i denote the expected reward sum for player i, given
a previous history h. This relates to the utility described in
definition 2 by

Ui(S0, S1) = UH
i (∅, S0, S1)

There exists a recursive definition of UH
i :

UH
i (h, S0, S1) =∑

(a0,a1)∈
A0×A1

S0(h, a0)S1(h, a1)ui(a0, a1) + γUi (h : (a0, a1), S0, S1)

Furthermore the function U #
i shall denote the expected

utility of a given stage n.

U #
i (n, S0, S1)

=
∑
|h|=n

UH
i (h, S0, S1) · p(h, S0, S1)

where p(h, S0, S1) is the probability of a history h under the
two strategies S0 and S1. p can be computed recursively:

p (hs : (a0, a1), S0, S1) = S0(hs, a0)S1(hs, a1)p(hs, S0, S1)

Themain goal of the learning algorithms presented later
in this paper can roughly be described as optimizing the
strategy with respect to this notion of utility.

Before elaborating this further, some special cases for
strategies shall be presented.
Definition 3. A stationary strategy is a strategy where the
probability of choosing an action is independent from the current
history [7]. S is stationary iff

∀h1, h2 : S(h1, a) = S(h2, a)

Definition 4. A Moore Machine is a tuple M =
(Q, q0,Σ,Λ, δ, o) where Q is a set of states, q0 is the initial
state, Σ is the alphabet of input symbols, Λ is the alphabet of
output symbols, δ : Q × Σ → Q is the state transition function
and o : Q → Λ is the output function that associates every state
with an output symbol.

A strategy which can be computed by a Moore Machine
will be called a deterministic finite strategy.

Tit-for-Tat is a strategy for the IPD which has especially
become popular after the experiments performed by Axel-
rod [1]. A Tit-for-Tat playing agent will collaborate in the
first move and then copy his opponent’s previous action in
all subsequent steps. Tit-for-n-Tat is a generalization of this
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idea: An agent following this strategy will keep collaborat-
ing and allow the opponent to defect n−1 times. Only if the
opponent has defected n ormore times in a row, the Tit-for-
n-Tat agent will defect as well.

Every Tit-for-n-Tat strategy can be represented by a
Moore Machine. Let the set of actions be A = Σ = Λ =
{0, 1} where 0 stands for “defect” and 1 stands for “col-
laborate”. Then a machine that computes a Tit-for-n-Tat
strategy is given by Mn = (Q, q0,Σ,Λ, δ, o) with Q =
{0, 1, . . . , n}, q0 = 0, and the following transition and out-
put functions:

δ(s, a) =

{
min(s+ 1, n) if a = 0

0 otherwise

o(s) =

{
0 if s = n

1 otherwise

Throughout this paper, Tit-for-n-Tat strategies will be used
as an example for Deterministic Finite Strategies.

2.2 Reinforcement Learning
The problem of acting optimally in a completely observ-
able environment exhibiting the Markov Property has been
largely solved thanks to Reinforcement Learning (RL). One
of the most popular RL-algorithms is Q-learning [25, 28]. Q-
learning seeks to approximate the utility of every pure ac-
tion in every state.
Definition 5. Let α denote the learning rate and γ the discount
factor. Let furthermore rτ be the reward observed in the τ ’th step.
then the following is called theQ-learning update rule for a state
s and an action a:

Qτ+1 (s, a)←Qτ (s, a)

+ α

(
rτ + γmax

a′
Qτ (s, a

′)−Qτ (s, a)

)
In the case of stateless games, the state information is

irrelevant. A Q-learning agent in this setting will simply up-
date the quality estimate for the previously played action.
Q-Learning in a stateless game can be considered as a func-
tionLα,γ : H → (A→ R) that associates with each history
of the game a mapping from actions to quality estimates.
Definition 6. An action selection scheme is a function ρ :
A × (A → R) → R that maps from a function assigning utility
estimates to actions and an action to a probability of selecting that
action.

A popular example is the Softmax or Boltzmann action
selection [25, 16]:

ρ(a,Q) =
eQ(a)·τ−1∑

a′∈A eQ(a′)τ−1

Another technique commonly used is the ε-greedy approach
[25]:

ρ(a,Q) =

{
1− ε if a = argmaxa′ Q(a′)

ε otherwise

The constants ε and τ are parameters which can be used to
balance between the exploration of new strategies and the
exploitation of previously gained knowledge.

It is easy to see that aQ-learning functionL and an action
selection scheme ρ together form a strategy which will be
referred to as the Q-learning strategy:

Sq(h, a) = ρ(a,Lα,γ(h))

Making use of the above concepts, the next section will
present theoretical results about the question, how optimal
play can be achieved in two-player repeated games.

3 Notions of Optimality
A primary concernwill be to find an optimum in the space of
strategies of a repeated gameG#. In this section the notion
of optimality shall be formalized. Subsequently it will be
shown how stationary strategies, deterministic finite strate-
gies and Q-learning fit into this notion and finally it will be
argued why it is sensible to consider Opponent Modeling as
a means to reach or at least to get close to optimality.

In the preceding section the notion of utility in multi
stage games was defined. This concept gives rise to the idea
of a best-response strategy [18].
Definition 7. A strategy S0 is called a best response strategy
against, S1 with respect to a set of strategies S, iff

∀S′ ∈ S : U0(S
′, S1) ≤ U0(S0, S1)

As an example consider the set of all stationary strate-
gies in the IPD:
Theorem 1. In the IPD, the strategy “always defect” is a best re-
sponse against any stationary strategy with respect to the set of
stationary strategies.

Proof. LetS1 be a stationary strategy. Let y denote the prob-
ability of playing “collaborate” under S1. Let furthermore
S0 be the stationary strategy which is sought to be optimal
against S1 and let x denote the probability of playing “col-
laborate” under S0. It will be shown that x = 0 maximizes
the discounted reward sum U0. Let the expected future re-
ward of playing S0 with x be denoted as r(x). Then by defi-
nition of the discounted reward

r(x) =
∞∑
i=0

γi (3xy + 5(1− x)y + 1(1− x)(1− y))

=
∞∑
i=0

γi (−3xy + 4y + x+ 1)

(v. June 24, 2011, p.3)



Daniel Mescheder

The derivative of this function with respect to x is thus

dr

dx
=

∞∑
i=0

γi (−3y + 1)

Which means that r is strictly monotonic decreasing iff y >
−1

3 , which is always the case as y ∈ [0, 1]. Thus a minimal
value of x maximizes r. Knowing that x ∈ [0, 1], the best
response to any stationary strategy is to play “collaborate”
with a probability of zero, i.e. to always defect.

The expected reward of a defecting agent playing against
a stationary strategy with a chance of collaborating denoted
by y is given by

U0(S0, S1(y)) =
∞∑
i=0

(1− y)γi + 5yγi =
1 + 4y

1− γ
(1)

In MAL it is generally not very interesting to consider
best response strategies as such, as the focus of interest is
on learning policies. Such a strategy may not play optimally
at first, but verywell in the long run. In order to substantiate
this notion of “long run optimality”, the concept of a limit
best response strategy will be introduced:
Definition 8. A strategy S0 will be called the limit best re-
sponse against S1 with respect to a set of strategies S iff

∀S′ ∈ S, ε > 0∃n ≥ 0 : U #
0(n, S

′, S1) < U #
0(n, S0, S1) + ε

Obviously, any strategy which is a best response against
S1 with respect to Swill also be a limit best response against
S1 with respect to S.

As an example, consider the Q-learning strategy as de-
scribed in Section 2.2. Countering a stationary strategy is
equivalent to acting in a Markov Decision Process with just
one state. The reward of an action a is a random variable
only depending on a. Tsitsiklis proved that in such a setting
Q-learning converges to the optimal value functionQ? [27].
This relies on some assumptions, most of which are trivially
met in the case under consideration as no noise is involved
and there is just one state. Thus, if these assumptions are
met and if the action selection policy ρ converges to greedy
behavior over time, then Q-learning is a limit best response
against any stationary strategy with respect to the set of all
stationary strategies.

Limit best response behavior is a relaxation of the con-
cept of a best response strategy. One should, however, keep
in mind that this notion in its most general form does not
lead to a practicable framework for real world algorithms,
as the following theorem shows:
Theorem 2. No strategy which is computable by a finite algo-
rithm can be a limit best response in every game against every
strategy and with respect to the set of all strategies.

Proof. Consider the Battle of the Sexes game described
above. Let S0 be any strategy which is computable by a fi-
nite algorithm. For any finite algorithm there exists a Tur-
ing Machine computing the same function. Let M0 be the
Turing Machine computing S0. For every Turing Machine
M it is possible to construct an second Turing Machine T
which simulates M and performs further calculations with
the result [24].

This can be used to construct a new Turing MachineM?

computing the strategy function S? shown in Algorithm 1.
Obviously, for any value of n, U #

0(n, S0, S
?) = 0. The way

M? is constructed guarantees that the couple always fails to
meet.

Algorithm 1 The new Turing MachineM?

1: On input h
2: SimulateM0 on h
3: if Result ofM0 is ”opera” then
4: return ”football”
5: if Result ofM0 is ”football” then
6: return ”opera”

At the same time, U #
0(n, S

?, S?) ≥ 2 for every n and
every discount factor γ, as both playerswill alwaysmeet and
the immediate reward will always be at least the reward of
the least favored option.

However, this means that for every S0 there exists a
value ε, a strategy S′ and an opponent strategy S2 ∈ S,
where ε = 1, S′ = S? and S2 = S?, such that for all n,

U #
0(n, S

′, S1) > U #
0(n, S0, S1) + ε

Thus, no computable strategy can satisfy the general limit
best response criterion.

This suggests that in order to get any guarantees, it is
reasonable to restrict the class of opponents in question
and/or to limit the set of strategies an algorithm is com-
pared to.

The results above indicate that the Q-learning strat-
egy performs well compared to stationary strategies. How-
ever, its behavior against strategies which do take into ac-
count the history of the game is expected to be less satis-
factory. Consider the Tit-for-two-Tat strategy. Carmel and
Markovitch proved that for every finite deterministic strat-
egy there exists a finite deterministic best response[8]. In
the case of Tit-for-two-Tat, this best response consists in
alternately defecting and collaborating. Q-learning cannot
find this best response behavior as information such as “de-
fecting once leads to collaboration; defecting twice leads to
a defect” is discarded and only immediate rewards are taken
into account.

Previous research furthermore investigated on the be-
havior of Q-learning in self-play. It has been shown that the
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Figure 1: Traces of two Q-learning agents with Boltzmann
action selection in the IPD, τ = 1

100 , α = 1
100 , γ = 0. The

strategies converge towards the Nash equilibrium ”always
defect”.

game tends to converge to stationary subgame-perfect equi-
libria [16, 17]. Figure 1 shows the traces of two Q-learning
agents in the IPD. The traces of Q-learning in the Battle of the
Sexes game (Figure 2) furthermore indicate that in this game
Q-learning is not a limit best response to itself: It seems that
a better strategy than the behavior shownwould be to insist
on ones preferred choice (opera or football) and to let the
other player adapt.

Also the learning result in the IPD is not satisfactory, as
there exists a pair of strategies which form a Nash equilib-
rium (i.e. they are mutual best responses) whose reward is
higher than the reward obtained with Q-learning, as the fol-
lowing, well known result shows:
Theorem 3. Ifγ ≥ 1

2 , then Tit-for-Tat is a best response strategy
to Tit-for-Tat in the IPD1 (see [13, p. 111]).

For this result to hold it is important that the stage game
is repeated infinitely or indefinitely often. The expected re-
ward of a Tit-for-Tat agent playing against Tit-for-Tat is

U0(S0, S1) =
∞∑
i=0

3 · γi =
3

1− γ

From equation 1 it is known, that the utility of playing “al-
ways defect”, against an always defecting agent, i.e. the
equilibrium that Q-learning converges to is 1

1−γ . In other
words, Tit-for-Tat expects a three times better longterm re-
ward. At the same time this pairing of strategies is stable,
as no player can improve by changing the strategy. A good
learning algorithm for MAL should find such an equilibrium
in self-play.

It is reasonable to assume that for every strategy that
the learning agent will ever encounter, there exists a finite

1In fact it can be shown that this pair of strategies is even subgame per-
fect, i.e. no player can gain by deviating from the strategy in any subgame.

Figure 2: Traces of two Q-learning agents with Boltzmann
action selection in the Battle of the Sexes game, τ = 5

100 ,
α = 1

1000 , γ = 0. Depending on the starting mixed strate-
gies, the game converges either to the equilibrium ”always
play football” or to ”always play opera”.

description. Note that the proof of Theorem 2 still covers
this case, i.e. it is still not possible to achieve general limit
best response behavior with a finite algorithm. Consider the
scenario where the learning agent is given a description of
her opponent. This would turn the problem at hand into a
discrete optimal control problem in which the opponent is
the system which is to be controlled and optimal control is
achieved if the opponent produces actions that are desirable
from the learners perspective. Scholars in control theory
have discussed several classes of systems for which there
exist optimal or at least approximately optimal control al-
gorithms. As, however, such a model is generally not given
in advance, it is necessary to first identify the parameters
of the underlying model with the help of the opponents in-
put/output behavior before such a technique can be used.

The next section describes some of the approaches that
have been discussed in literature in the context of Opponent
Modeling.

4 Related Work
Over the years scholars have proposed several OM tech-
niques. The fictitious play algorithm introduced by Brown
in 1951 [4, 3] can already be seen as an OM technique. A
player following this strategy creates a model of her oppo-
nent by averaging all the past outputs she observed. The re-
sult is an estimate of the opponent’s currentmixed strategy.
The player will then use her knowledge by playing the best
response pure action against this mixed strategy. Tesauro
proposed a similar but more sophisticated algorithm named
Hyper-Qwhich uses aweighted average of the opponent’s ac-
tions as an estimator for her current mixed strategy [26]. It
is assumed that the opponent’s internal state coincides with
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this very strategy but in contrast to Brown’s fictitious play,
it is not assumed that the “greedy”, immediate best response
leads to the highest future payoff. Instead the mixed strat-
egy is fed as the current state into Q-learning which then
serves as a quality estimator.

The predictions from fictitious play and Hyper-Q are
expected to be reasonable against stationary players and
against strategies that vary only insignificantly during each
learning step as for example Q-learning with a low learning
rate. However, a player based on a Moore Machine such as
Tit-for-two-Tat cannot be modeled using this approach.

Carmel and Markovitch developed an Opponent Model
based on Moore Automata [6, 7, 8]. The idea is to generate
an automaton which explains and generalizes the past ob-
servations. Finding a minimal automaton for a sequence of
observations has been shown to be NP-complete and is thus
not feasible in practice [14]. Carmel andMarkovitch propose
a heuristic called US-L* which bounds the size of the model
by

|Mk+1| = |Mk|+ |h|+ 1

where |Mk+1| is the size of the newmodel, |Mk| is the size of
the old one and |h| is the length of the current game history,
i.e. the number of outputs that have been observed.

In this article, only the case will be considered in which
just one sequential experiment can be performed, i.e. that
the opponent can not be “reset” to an initial state such that
the game starts over from the beginning. Under this restric-
tion, US-L* turns out not to be practicable.

Algorithm 2 Identification algorithm for Moore Machines.
M is the current model, i is the last input and r is the re-
sponse that followed the input i.
1: function update-model(M, i, r)
2: (Q, q0,Σ,Λ, δ, o)←M
3: Q′←Q ∪ {max(Q) + 1}

4: δ′(s, a) =


max(Q) + 1 if s = max(Q) ∧ a = i

max(Q) + 1 if s = max(Q) + 1

δ(s, a) otherwise

5: o′(s) =

{
r if s = max(Q) + 1

o(s) otherwise
6: return (Q′, q0,Σ,Λ, δ

′, o′)

Theorem 4. If the identification is based on just one sequential
experiment, then there exists an algorithm which bounds the op-
ponent model by

|Mk+1| = k + 2 = |h|

Proof. Consider the update-mechanism shown in algorithm
2. Moreover, let the initial machine be given by Q = {0},
q0 = 0, δ(s, a) = 0 and o(s) = r0 where r0 is the opponent’s
response to the empty input. After every update, maxQ is

the model state which is reached by following the current
history. In every step exactly one state is added which cor-
responds to the newly observed output. The bound clearly
holds for the initial automaton where |M0| = |h0| = 1. Let
|Mk| = k + 1, exactly one state is added during the model
update, thus |Mk+1| = k + 2.

Theorem 7 in appendix A demonstrates, that US-L* does
performworse than Algorithm 2 for certain examples. Thus,
for the case of a sequential experiment, a simple algo-
rithmas given in Theorem4 guarantees stricter bounds than
US-L*.

In general, a technique based on the identification of
Moore Machines is expected to work well against oppo-
nents playing deterministic finite strategies. Countering a
stochastic policy as for example Q-learning, however, the
state-space of the identified automaton will become unfea-
sibly large.

The following sectionwill provide an insightwhich leads
to a new class of opponent modeling algorithms based on
POMDPs which seek to combine the strengths of the meth-
ods presented in this section.

5 Link to POMDPs
It has been shown in Theorem 2, that it is not possible to
derive a learning algorithm which is optimal against every
type of player. It is therefore necessary to introduce a set
of limiting assumptions. In the following it will be assumed
that the opponent possesses a set of internal states. Her cur-
rent mixed action depends only on her current state, i.e. ev-
ery internal state is associated with a probability distribu-
tion over all the possible pure actions. Furthermore, it is
assumed that the opponent will transfer to another inter-
nal state during each iteration and the probability of trans-
ferring to a certain state only depends on her current state
and the action she observed. This in fact is equivalent to the
Markov Property and the class of agents described in this
paragraph are those strategies which can be represented by
a Partially Observable Markov Decision Processes (POMDP).
Definition 9. A Partially Observable Markov Decision
Process (POMDP) is a tuple (A, C, na, no, p) where A =
(A(0), A(1), . . . , A(na−1)). Here na is the number of input ac-
tions which, for simplicity, are supposed to be integers between 0
and na − 1. Let ns be the size of the state space and no be the
number of pure outputs, then for all x and all j,

ns∑
i=1

A
(x)
(i,j) =

no∑
i=1

C(i,j) =

ns∑
i=1

pi = 1 (2)

Let P (X(τ) = x) denote the probability of observing input ac-
tion x in step τ . Let furthermoreP (S(τ) = s) be the probability
that the POMDP is in state s at time τ andP (Y (τ) = y) the prob-
ability that the POMDP produces the output y at time τ . Then the
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interpretation ofA,C and p is that

A
(x)
(s,sτ )

= P (S(τ + 1) = s | X(τ) = x, S(τ) = sτ )

C(y,sτ ) = P (Y (τ) = y | S(τ) = sτ )

ps = P (S(τ) = s)

There are several reasons why this limiting assumption
is reasonable. Firstly, the problem Carmel and Markovitch
considered [8], the optimal control of Moore Machines, is a
special case of the optimal control problem of POMDPs:
Theorem 5. Every Moore Machine is also a POMDP.

Proof. By construction: Let (Q, q0, na, no, δ, o) be a Moore
Machine. Then an equivalent POMDP with state-spaceQ′ =
Q is given by:

pi =

{
1 if i = q0

0 otherwise

A
(x)
(i,j) =

{
1 if δ(j, x) = i

0 otherwise

C(i,j) =

{
1 if o(j, x) = i

0 otherwise

Thus, a learning algorithm which is able to identify
POMDPs is expected to play successfully against determin-
istic finite strategies. It is also easy to see that every station-
ary strategy can be represented by a POMDP: Let π(ai) =
P (A = ai) be the probability of playing a pure action ai.
Then an equivalent POMDP with just one state can be con-
structed by taking p = (1),A(x) = [1] and C(i,j) = π(ai).

Though in practice it is probably not possible to identify
general POMDPs with infinite state spaces, it is interesting
to note that if one allows for this generalization, POMDPs
encompass the set of all strategies defined in Section 2.
Theorem 6. Every strategyS as given in Definition 2 can be rep-
resented by a POMDPwith an at most countably infinite number of
states.

Proof. By construction. Let the state space of the POMDP be
H. Let

pi =

{
1 if i = ∅
0 otherwise

A
(x)
(hi:(ai,aj),hj)

=

{
S(hj , ai) if hi = hj ∧ aj = x

0 otherwise

C(a,h) =


S(a, ∅) if h = ∅
1 if h = hs : (ai, aj) ∧ ai = a

0 otherwise

As the set of all histories is countably infinite, for ev-
ery strategy there exists a POMDP with a countably infinite
number of states.

Corollary 1. The Q-learning strategy can be represented as a
POMDP with a countably infinite number of states.

Up to this point, the opponent has always been treated
as an entity separate from her environment. An alternative
perspective is to view the opponent as an unobservable part of
the environmentwhose new state space is the Cartesian prod-
uct of the environment’s original state space and the agent’s
internal state space. From this perspective, and with the re-
strictions on the opponent presented above, the problem of
playing optimally against an opponent becomes equivalent
to the problem of acting optimally in a partially observable
environment.

Several techniques have been proposed for learning in
partially observable environments. However, it appears
that none of them guarantees an optimal result. In the next
section, two approximation techniques to identify POMDP
based opponents will be presented.

6 Learning algorithms based on
POMDPs

In this section, two learning algorithms based on POMDPs
shall be presented. The goal will be to explicitly identify
the underlying POMDP from a sequence of observed in-
put/output behavior. The techniques presented here are
based on the work by McCallum on the topic of Reinforce-
ment Learning with aliased states [21, 20]. Consider a strat-
egy which is indeed based on a POMDP and whose model
can be identified. In that case RL techniques as Q-learning
(Definition 5) constitute ameans to achieve optimal control.
Therefore, an adequate POMDP based identification tech-
nique is expected to eventually lead to limit best response
behavior with respect to the class of POMDP-based strate-
gies.

The first technique presented below introduces the lim-
itation that the number of internal states of the opponent is
known or can be estimated. If this is the case, a Baum-Welch
based maximum likelihood estimation can be performed to
improve the parameters of the POMDP such that the model
explains the data observed as accurately as possible.

The second technique builds on the first algorithm and
introduces an outer loop that performs statistical tests to de-
terminewhether or not it is reasonable to increase the num-
ber of states of the model. This reduces the limitation of the
first algorithm at the price of a higher computational com-
plexity.
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6.1 Continuous Baum-Welch Maximum
Likelihood Estimation

APOMDPunder a given input sequence of lengthn can be re-
garded as a probability distribution over all possible output
sequences of length n. Consider the case where the number
of states of the underlying POMDP is known or can be esti-
mated. Then the task of deriving a set of parameters for a
POMDP that can best explain the observed sequence is actu-
ally a maximum likelihood estimation.

Baum and Welch proposed a hill-climbing method for
maximum likelihood estimations in Hidden Markov Models
(HMM). Thismethod can bemodified so that it alsoworks for
POMDPs. A detailed description is given in appendix B. The
Baum-Welch procedure has been proven to converge to a lo-
cal maximum. At the time of writing, there is no algorithm
that guarantees convergence to a globally optimal solution.

6.2 Maximum Likelihood and State Splitting
In general, the number of states of a POMDP cannot be
known a priori. The function update-pomdp outlined in Al-
gorithm 3 seeks to overcome this problem and to add states
dynamically by statistical evidence. The function is called
after a fixed number of steps with a fixed length history h. It
consists of an outer and an inner iteration. While the outer
loop is responsible for determining the correct number of
states, the inner iteration seeks to find a maximum likeli-
hood model given the current observations and the current
number of states.

This inner loop makes use of the Baum-Welch method
used in Section 6.1 and described in Appendix B. The Baum-
Welch update is applied repeatedly until the log-likelihood
improvement falls below a threshold ε. At this point the
model is assumed to have converged.

Algorithm 3 Updating the POMDP model
1: function update-pomdp(xs, ys,m)
2: repeat .While new states are being added
3: l← log-likelihood(xs, ys,m)
4: repeat . Until the likelihood converges
5: lold← l
6: m← baum-welch(xs, ys,m)
7: l← log-likelihood(xs, ys,m)
8: until |l − lold| < ε
9: mold←m
10: c← confidence-cluster(xs, ys,m)
11: m← split-states(c,m)
12: until |m| = |mold|
13: returnm

The outer loop uses the current model and the in-
put/output data to create confidence intervals over the ex-
pected output following each transition. If the confidence
intervals of two transitions leading to the same state do

not overlap, it can be concludedwith statistical significance,
that the output of that particular state depends on the his-
tory of the game. That, however, violates the Markov prop-
erty. The conflict is solved by adding a new state for each
cluster of overlapping confidence intervals. This last step
can be shown to be an instance of theminimum clique cover
problem from graph theory which is NP-complete. Yet, a
number of approximation algorithms and heuristics exist. A
detailed description of the state-splitting algorithm is given
in appendix C.

This procedure bases loosely on the perceptual distinc-
tions approach by Chrisman [10]. McCallum used a similar
approach and introduced the idea of splitting states based
on the expected responses associated with state transitions
[20, 21]. However, instead of constructing confidence inter-
vals over the opponent’s outputs, he tested for statistically
significant differences between the expected discounted fu-
ture rewards of each pair of transitions.

With the state splitting procedure described above, a
technique was introduced which circumvents the main lim-
itation of pure Baum-Welch updates: The number of states
does not have to be known in advance anymore. Neverthe-
less, some approximations and heuristics had to be used. It
is thus not obvious, how well these techniques will perform
in practice. The following section will present a number of
quantitative experiments to asses the quality of each of the
identification mechanisms presented above.

7 Experiments and Results
In the last section two algorithms were introduced as a
means of identifying opponent strategies. In this section
these two techniques will be tested on their predictive per-
formance.

7.1 Performance of the Baum-Welch
Procedure

Figure 3: Agreement between Tit-for-Tat strategy and the
learned model measured by the number of correct predic-
tions on a sample of the original agent’s behavior.
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Figure 4: Agreement between Tit-for-two-Tat strategy and
the learned model

Figure 5: Model of the Tit-for-two-Tat strategy learned by
the Baum-Welch procedure. The states are labeled with i :
o ∼ p where i is the name of the state, o is an output and
p is the probability of observing o in state i. The transitions
are labeled as a ∼ pwhere a is the action which triggers the
transition at hand and p is the transition probability given
that a was played.

The performance of the pure Baum-Welch procedure
was tested on a set of deterministic finite strategies. This is
to examine how well the procedure presented in appendix
B performs if the target machine is indeed a POMDP, but the
size of the state-space is estimated incorrectly.

For the experiment a large sample of the opponent’s be-
havior is generated, i.e. a set of input sequences together
with their corresponding output sequences. Subsequently,
in every learning step a Baum-Welch update is performed
with the current input/output sequence. The agreement be-
tween the original strategy and the model is the measured
as the ratio of the samples which the model can predict cor-
rectly.

During the experiment, the learning agent plays a sta-
tionary strategy with 50% probability for each action. The
first test is performedwith Tit-for-Tat. The graph in figure 3
shows that for all models with at least two states, the Baum-
Welch procedure converges to the correct set of parameters.

Similar results are found for the identification of a Tit-
for-two-Tat player (Figure 4). An example of a resulting
model with three states is shown in Figure 5. The test
with the Tit-for-three-Tat strategy (Figures 6 and 7) reveal a
much slower convergence. Nevertheless the correct model
was learned eventually if the number of states was chosen

Figure 6: Agreement between Tit-for-three-Tat strategy and
the learned model.

Figure 7: Model of the Tit-for-three-Tat strategy learned by
the Baum-Welch procedure

adequately. Yet, evenmodels with three states yielded good
results: A three-state model predicted nearly 90% of the
sample correctly. This indicates, that for some applications
modeling with a lower than optimal state-space might still
perform satisfactorily.

7.2 Performance of the State Splitting
Procedure

Figure 8: Error of the model prediction against Tit-for-n-Tat
strategies in the IPD.

The state splitting identification procedure was tested
by looking at the prediction error of themodel: In each step,
the modelling agent was asked to make a prediction about
the current mixed strategy of his opponent. The absolute
difference between the real mixed strategy and the predic-
tion is then plotted as the current discrepancy between the
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Figure 9: Prediction error of the model of two Q-learning
agents in the IPD with different learning rates

Figure 10: Prediction error of the POMDP identification al-
gorithm compared to the error of a prediction based on the
moving average of past observations in a IPD game against
Q-learning with learning rate 0.1.

model and the real strategy.
In Figure 8 the state splitting procedure with 500 sam-

ple steps and a significance σ = 0.1 was tested against Tit-
for-n-Tat strategies. The results show that for none of the
opponent strategies, optimal convergence of the model can
be guaranteed. However, already after the first learning pe-
riod, the average error decreases considerably.

Figure 9 shows the prediction error in an IPD against Q-
learning agents with varying learning rates. The general
prediction error is lower than the one observed in the case of
Tit-for-n-Tat strategies. However, this is mainly because in
contrast to deterministic finite strategies, Q-learning agents
will play a mixed strategy. Therefore if the model errs in
its prediction, the implications will be less severe. Conse-
quently, it is difficult to compare these results with each
other. Furthermore, even though the model does predict
the Q-learner’s action reasonably well, it would be wrong to
conclude, that a representation of Q-learning was detected
in the process. In fact, during most sample runs, no state
splitting took place and the resulting model was still simply
based on amaximum likelihood estimation using a two-state
POMDP. Figure 9 also shows why this can be problematic: A
higher learning rate (which leads to a more “jumpy” behav-

ior of the Q-learner) makes it more difficult for the model to
generate the right prediction.

In spite of the underfitting problem in the case of Q-
learning the quantitative results are generally encouraging:
Figure 10 shows that the POMDP-based estimate is not sig-
nificantlyworse than the averagingprocedure that fictitious
play bases on. At the same time it performs well against
discrete finite strategies - a domain in which the moving
average-based approach is insufficient.

8 Conclusion and Discussion
This paper investigated on Opponent Modeling as a means
to learn best response behavior. In the first part the con-
cept of limit best response strategies was introduced. It was
shown that OMconstitutes a techniquewhichmight eventu-
ally lead to limit best response behavior against a large class
of opponent strategies. Moreover, POMDPs are a promis-
ing framework as they encompass a large class of strategies.
The algorithm presented was transferred from the domain
of learningwith aliased states to the domain of OM. It turned
out that this technique can indeed approximate the internal
structure of an opponent. However, it makes use of some
heuristics: Firstly, the Baum-Welch procedure which does
not guarantee convergence to a global optimum and sec-
ondly the method which is used for clustering in the state
splitting procedure. Therefore, it is difficult to provide the-
oretical guarantees for this approach.

Experimental evidences suggest that the algorithm is
able to predict the behavior of Tit-for-n-Tat and to some de-
gree the more complex Q-learning strategy. Yet the result
for the latter is still not fully satisfactory, as the model fails
to capture the precise dynamics of Q-learning. Compared to
the algorithms presented in section 4, the POMDP learner
seems to be a viable compromise. It performs reasonably
well in the domain of deterministic finite strategies but also
approximates the behavior of stochastic strategies.

In this paper, the Utile Distinction Memory algorithm
was merely tested on its ability to predict the opponent’s
behavior. The original algorithm used by McCallum [20] in-
tegrates the resulting prediction with Q-learning to actually
learn an optimal strategy. It will be interesting to see, how
such a modeling and learning agent competes against the
various common strategies that were examined in this pa-
per.

Moreover, the problem of balancing exploration and ex-
ploitation becomes interesting in the light of OM. For the
results shown in section 7, the modeling agent played a uni-
form stationary strategy. It is conceivable that better results
would arise, if the agent for instance tried to explicitly col-
lect data about one particular state of the model in order to
determine whether it would be reasonable to split it up.
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A Shortcomings of US-L*
In Section 4 the US-L* algorithm proposed by Carmel and
Markovitch [8, 5, 6] was introduced. Furthermore, an algo-
rithm was presented which is able to identify an automaton
M from a history h such that in any step k the size of the
model is bounded by |Mk+1| = |h|. This sectionwill present
a proof that US-L* performs worse than that.

Theorem 7. When US-L* is applied in the special case of a se-
quential experiment, then there exist examples for which it yields
a model with |Mk+1| > |h|.

Proof by counterexample. Consider the automaton with
the following transition table:

1 2 output
0 (initial) 0 1 1
1 1 0 2

The algorithm previously identified the automaton Mk

with the following transition table:

2 1 output
(1, 2) (2, 1) (2, 2) 2
(2, 1) (1, 2) (2, 1) 1
(2, 2) (initial) (1, 2) (2, 1) 2

This automaton supports the sequence of past observa-
tions (λ → 1), (2 → 2), (2, 1 → 2) Consider the new ob-
servation (2, 1, 2 → 1). The resulting tableau will look as
follows:

λ
λ 1
2 2
2, 1 2
2, 1, 2 1
1 1
2, 2 1
2, 1, 1 1
2, 1, 2, 2 1
2, 1, 2, 1 2

The upper part entries stem from the actual observa-
tions. The lower part entries have been filled up using the
current automatonmodel. The algorithmwill continuewith
the consistency loop duringwhichλ is found to conflict with
(2, 1, 2) because

T ((2), λ) = 2 6= T ((2, 1, 2, 2), λ) = 1

however, T (λ, λ) = T ((2, 1, 2), λ). According to the algo-
rithm, this inconsistency is solved by adding a new column
to the tableau and filling it with observations, ties or the cur-
rent predictions of our model (precedence in that order):

2 λ
λ 2 1
2 1 2
2, 1 1 2
2, 1, 2 1 1
1 2 1
2, 2 2 1
2, 1, 1 2 1
2, 1, 2, 2 2 1
2, 1, 2, 1 2 2

Still the table is not consistent as the entry 2 conflicts
with (2, 1) because T ((2, 2), 2) = 2 6= T ((2, 1, 2), 2) = 1,
but T ((2), 2) = T ((2, 1), 2) = 1. The new tableau after the
update looks as follows:

2 λ 2, 2
λ 2 1 1
2 1 2 2
2, 1 1 2 1
2, 1, 2 1 1 2
1 2 1 1
2, 2 2 1 1
2, 1, 1 2 1 1
2, 1, 2, 2 2 1 1
2, 1, 2, 1 2 2 1

This table has become consistent, but it is not yet closed
as there exists no s ∈ S such that row((2, 1, 2, 1)) =
row(s). The algorithm closes the tableau by moving the en-
try (2, 1, 2, 1) to S:

2 λ 2, 2
λ 2 1 1
2 1 2 2
2, 1 1 2 1
2, 1, 2 1 1 2
2, 1, 2, 1 2 2 1
1 2 1 1
2, 2 2 1 1
2, 1, 1 2 1 1
2, 1, 2, 2 2 1 1
2, 1, 2, 1, 2 1 2 2
2, 1, 2, 1, 1 2 1 1

This new tableau is consistent and closed, meaning it al-
lows the construction of a new automaton [8]. The resulting
machine has five states while the input consists of merely
four observations. The transition table is given below:

2 1 output
(2, 2, 1) (1, 2, 2) (2, 1, 1) 2
(1, 2, 2) (2, 1, 1) (1, 2, 1) 2
(2, 1, 1) (initial) (1, 2, 2) (2, 1, 1) 1
(1, 2, 1) (1, 1, 2) (2, 1, 1) 2
(1, 1, 2) (2, 1, 1) (2, 2, 1) 1
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B Numerically Stable Baum-Welch
updates in POMDPs

The Baum-Welch procedure, in its original formulation, is
an algorithm for optimizing the parameters of a Hidden
MarkovModel (HMM) in order to improve the likelihood of a
sequence of observed outputs [2, 29]. The procedure is based
onBaum’s forward-backward algorithm forHMMparameter
estimation.

To be able to apply this technique in the context of
OM, two modifications are necessary. Firstly, the original
forward-backward algorithm suffers from numerical insta-
bilities. Devijver proposed a equivalent reformulation of
this procedure which works around these instabilities [11].
Secondly, both the Baum-Welch procedure and Devijver’s
version of the forward-backward algorithm are designed for
HMMs, not for POMDPs.

This section will demonstrate, how Devijver’s forward-
backward algorithm can be restated for the case of POMDPs
and how it then can be integrated in a adjusted version of
the Baum-Welch update.

Let the POMDP be defined according to Defini-
tion 9 by (A, C, na, no, p). The aim of the POMDP
forward-backward procedure is to find an estimator
for P

(
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The problem reduces thus to findingα and β which shall
be called the forward estimate and the backward estimate
respectively.
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Repeated application of Bayes’ Rule and the definition of

the POMDP, leads to the following recursive formulation of
α:
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This yields a recursive policy for calculating α. The missing
piece,N (τ), can be calculated using the preceding recursion
step for α:

1
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The common term of Equations 3 and 4 can be extracted to
make the process computationally more efficient:

α(τ, s) = N (τ)γ(τ, s)

N (τ) =
1∑

σ γ(τ, σ)

γ(τ, s) = C(yτ ,s)

∑
σ

α(τ − 1, σ)A
(xτ−1)
(x,σ)

The result differs from the original formulation [11] merely
by the fact that the appropriate transition matrix is chosen
in every recursion step. It is still necessary to calculate β,
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which can be reduced to a similar recursion:

β(τ, s) =
P
(
[Y ]

T
τ+1 = [y]

T
τ+1 | S(τ) = s, [X]

T
1 = [x]

T
1

)
P
(
[Y ]

T
τ+1 = [y]

T
τ+1 | [Y ]

τ
1 = [y]

τ
1 , [X]

T
1 = [x]

T
1

)
=N (τ + 1)

∑
σ

A
(xτ )
(σ,s)C(yτ+1,σ)β(τ + 1, σ) (5)

The base cases of the recursion given in Equations 6 and
7 follow directly from their probabilistic interpretation:

γ(1, s) = ps · C(y1,s) (6)
β(T, s) = 1 (7)

Using the definitions of α and β it is now
possible to derive an unbiased estimator for
P
(
S(τ) = s | [Y ]

T
1 = [y]

T
1 , [X]

T
1 = [x]

T
1

)
. It’s def-

inition bears a striking resemblance to the esti-
mator derived by Devijver [11]. Analogue to the
steps Baum and Welch took to derive their update
rule, the need for two more probabilities arises:
P
(
S(τ) = s, S(τ + 1) = σ | [Y ]

T
1 = [y]

T
1 , [X]

T
1 = [x]

T
1

)
and P

(
S(τ) = s, Y (τ) = y | [Y ]

T
1 = [y]

T
1 , [X]

T
1 = [x]

T
1

)
.

Luckily, α, β and N again can be used to compute these
probabilities.

P
(
S(τ) = s, S(τ + 1) = σ | [Y ]

T
1 = [y]

T
1 , [X]

T
1 = [x]

T
1

)
=
P
(
S(τ) = s, [Y ]

τ
1 = [y]

τ
1 | [X]

T
1 = [x]

T
1

)
P
(
[Y ]

τ
1 = [y]

τ
1 | [X]

T
1 = [x]

T
1

)
· P (S(τ + 1) = σ | S(τ) = s,X(τ) = xτ )

P
(
Y (τ + 1) = yτ+1 | [Y ]

τ
1 = [y]

τ
1 , [X]

T
1 = [x]

T
1

)
· P (Y (τ + 1) = yτ+1 | S(τ + 1) = σ)

·
P
(
[Y ]

T
τ+2 = [y]

T
τ+2 | S(τ + 1) = σ, [X]

T
1 = [x]

T
1

)
P
(
[Y ]

T
τ+2 = [y]

T
τ+2 | [Y ]

τ+1
1 = [y]

τ+1
1 , [X]

T
1 = [x]

T
1

)
=α(τ, s)β(τ + 1, σ)A

(xτ )
(σ,s)C(yτ+1,σ)N (τ + 1) (8)

It turns out, that the values forN calculated in Equation
4 can also be used to calculate the likelihood of the observed
data under the current model parameters.

P
(
[Y ]

T
1 = [y]

T
1 | [X]

T
1 = [x]

T
1

)
=

T∏
τ=1

1

N (τ)

In practice the log-likelihood will be of more interest, as it’s
calculation is more efficient and numerically more stable:

log
(

T∏
τ=1

1

N (τ)

)
= −

T∑
τ=1

log(N (τ))

The methods derived up to this point are useful to cal-
culate state probabilities, transition probabilities and out-
put probabilities given amodel and a sequence of inputs and
outputs. As Baum and Welch did in the case of HMMs, these
very probabilities will now be used to derive unbiased esti-
mators for the model’s parameters. Let Tx = {τ | xτ = x}.
Then ∑

τ=Tx

P
(
S(τ) = s | [X]

T
1 = [x]

T
1 , [Y ]

T
1 = [y]

T
1

)
|Tx|

≈P (S(τ) = s | X(τ) = x) (9)
A similar scheme can be used to derive an estimator for

the transition probabilities:

∑
τ∈Tx

P
(
S(τ) = s, S(τ + 1) = σ | [X]

T
1 = [x]

T
1 , [Y ]

T
1 = [y]

T
1

)
|Tx|

≈P (S(τ) = s, S(τ + 1) = σ | X(τ) = x) (10)
=P (S(τ + 1) = σ | S(τ) = s,X(τ) = x)

· P (S(τ) = s | X(τ) = x) (11)
where P (S(τ) = s | X(τ) = x) can be approximated

using the estimator from Equation 9. The result is an unbi-
ased estimator forP (S(τ + 1) = σ | S(τ) = s,X(τ) = x).
An estimator for the output probabilities can be derived ac-
cordingly, making use of the Markov property:

∑
τ∈Tx

P
(
S(τ) = s, Y (τ) = y | [X]

T
1 = [x]

T
1 , [Y ]

T
1 = [y]

T
1

)
|Tx|

≈P (S(τ) = s, Y (τ) = y | X(τ) = x)

=P (Y (τ) = y | S(τ) = s,X(τ) = x)

· P (S(τ) = s | X(τ) = x)

=P (Y (τ) = y | S(τ) = s) · P (S(τ) = s | X(τ) = x)

Thus,
P (Y (τ) = y | S(τ) = s)

≈
∑
τ∈Tx

P
(
S(τ) = s, Y (τ) = y | [X]

T
1 = [x]

T
1 , [Y ]

T
1 = [y]

T
1

)
|Tx|

(12)
Equation 12 holds for every value of x. Therefore a bet-

ter estimator can be derived by averaging the values over all
inputs:

P (Y (τ) = y | S(τ) = s)

≈
T∑

τ=1

P
(
S(τ) = s, Y (τ) = y | [X]

T
1 = [x]

T
1 , [Y ]

T
1 = [y]

T
1

)
|Txτ | · na · P (S(τ) = s | X(τ) = xτ )

(13)
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C Clustering of Transitions
According to Confidence Intervals

McCallum proposed a technique to determine whether a
state should be split into two seperate states using a statis-
tical test. The version described in McCallum’s paper con-
structs confidence intervals over thediscounted reward sum
[20]. As this paper focuses on actually identifying the oppo-
nent’s strategy, this section will merely consider the actual
state outputs. It remains interesting for future research to
investigate the impact of considering the expected rewards
instead.

The first step is to identify confidence intervals over
the output following each state transition. Algorithm 4
shows how this can be achieved. First, for every state tran-
sition the number of estimated visits, the estimated sum
of observed outputs after this transition and the estimated
sum of squared outputs after this transition are computed.
This information is then used to calculate the mean ex-
pected output for each transition. Furthermore, Student’s
t-distribution is used to construct a confidence interval at a
σ level of significance. Here, tnσ/2 denotes the t-value of a
distribution with n degrees of freedom at σ/2 error proba-
bility to each side.

Algorithm 4 Generate confidence intervals over outputs af-
ter a state transition. The results L and U are matrices of
lower and upper bounds respectively [20, 21].
1: function transition-intervals(xs, ys,m)
2: T ← transition-estimates(xs, ys,m)
3: for τ ∈ [0, . . . , |ys| − 1] do
4: y← ysτ
5: for (i, j, p) ∈ T (τ) do
6: p: pprobability of going from i to j in step τ
7: countij ← countij + p
8: sumij ← sumij + p · y
9: sumsquaresij ← sumsquaresij + p · y2

10: ∀i, j : µij ← sumij

countij

11: ∀i, j : sij ←
√

countij ·sumsquaresij−sum2
ij

countij ·(countij−1)

12: ∀i, j : Lij ← µij − t
bcountijc−1

σ/2 · sij√
countij

13: ∀i, j : Uij ← µij + t
bcountijc−1

σ/2 · sij√
countij

14: return L,U

The result is a tuple of matrices (L,U)whereL contains
the lower bounds of the significance intervals for each tran-
sition and U contains the respective upper bounds.

In the next step, for every state the set of incoming tran-
sitions is examined. Each such state corresponds to a row of
L and U . The goal will be to form a set of sets (clusters) of
transitions leading to one particular state. In each of these
clusters, the significance intervals of the respective transi-

tions are pairwise overlapping and the union of all clusters
equals the full set of incoming transitions. Furthermore the
aim is to find a clustering which is minimal, i.e. which satis-
fies the above constraint using the least possible number of
subsets.

This problem is equivalent to the so called minimum
clique cover problem from graph theory. Algorithm 5 shows,
how an adjacency matrix of a graph can be constructed in
O(n2) so that thenodes are the confidence intervals and two
nodes are connected by an edge if and only if their respec-
tive intervals overlap.

Algorithm 5 Take a set of intervals, given as a vector of
lower bounds and a vector of upper bounds and return the
adjacency matrix of a graph whose nodes are intervals and
where two nodes are connected if and only if their respec-
tive intervals overlap.
1: function intervals-to-graph(l, u)
2: ∀i, j : Tij ← (li ≤ uj)
3: ∀i, j : Aij ←

(
Tij ∧ TT

ij

)
4: returnA

The minimum clique problem can be stated as follows:
Given a graph G, find the minimal number of fully con-
nected subgraphs which cover every edge of G. Unfortu-
nately, this problem has been shown to be NP-complete.
Yet, there exists a broad range of heuristics and approxima-
tion algorithms [9, 15]. In experiments it was found that for
the problem at hand the relatively simple CC-Heuristic pre-
sented by Gramm et al [15] performed sufficiently well.
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